

LeapYear Python Client

Welcome to the Python API documentation for the LeapYear Secure ML module.
This documentation is meant to provide a detailed reference for
programmatically interacting with the LeapYear Core software.

Visit guides.leapyear.io [https://guides.leapyear.io] to access higher-level
material such as:

	an executive-level introduction to LeapYear.

	an architecture overview.

	a step-by-step tutorial for building your first model in LeapYear.

	a data science reference containing code snippets for data exploration, feature engineering, supervised and unsupervised learning.

	best practices for differentially private analytics.

	guides for admins and architects.

Table of Contents:

	Getting Started
	Connecting to LeapYear and Exploring

	The DataSet Class

	Data Analysis
	Statistics

	Machine Learning

	Management and Administration
	Managing the LeapYear Server

	API
	Module leapyear

	Module leapyear.admin

	Module leapyear.admin.grants

	Module leapyear.jobs

	Module leapyear.dataset

	Module leapyear.functions

	Module leapyear.feature

	Module leapyear.analytics

	Module leapyear.analytics.classes

	Module leapyear.model

	Module leapyear.exceptions

	Module leapyear.ext

Reference

	Index

Getting Started

Connecting to LeapYear and Exploring

The first step to using LeapYear’s data security platform for analysis is
getting connected. To get started, we’ll import the Client
object from the leapyear python library and
connect to the LeapYear server using our user credentials.

Credentials used for this tutorial:

>>> url = 'http://localhost:{}'.format(os.environ.get('LY_PORT', 4401))
>>> username = 'tutorial_user'
>>> password = 'abcdefghiXYZ1!'

Import the Client object:

>>> from leapyear import Client

Create a connection:

>>> client = Client(url, username, password)
>>> client.connected
True
>>> client.close()
>>> client.connected
False

Alternatively, Client is also a context manager, so the connection
is automatically closed at the end of a with block:

>>> with Client(url, username, password) as client:
... # carry out computations with connection to LeapYear
... client.connected
True
>>> client.connected
False

Databases, Tables and Columns

Once we’ve obtained a connection to LeapYear, we can look through the databases
and tables that are available for data analysis:

>>> client = Client(url, username, password)

Examine databases available to the user:

>>> client.databases.keys()
dict_keys(['tutorial'])
>>> tutorial_db = client.databases['tutorial']
>>> tutorial_db
<Database tutorial>

Examine tables within the database tutorial:

>>> sorted(tutorial_db.tables.keys())
['classification',
 'regression1',
 'regression2',
 'twoclass']
>>> example1 = tutorial_db.tables['regression1']
>>> example1
<Table tutorial.regression1>

Examine the columns on table tutorial_db.regression1:

>>> example1.columns
{'x0': <TableColumn tutorial.regression1.x0: type='REAL' bounds=(-4.0, 4.0) nullable=False>,
 'x1': <TableColumn tutorial.regression1.x1: type='REAL' bounds=(-4.0, 4.0) nullable=False>,
 'x2': <TableColumn tutorial.regression1.x2: type='REAL' bounds=(-4.0, 4.0) nullable=False>,
 'y': <TableColumn tutorial.regression1.y: type='REAL' bounds=(-400.0, 400.0) nullable=False>}

Column Types

TableColumn objects include their type, bounds, and nullability.

>>> col_x0 = example1.columns['x0']
>>> col_x0.type
<ColumnType.REAL: 'REAL'>
>>> col_x0.bounds
(-4.0, 4.0)
>>> col_x0.nullable
False

The possible types are: BOOL, INT, REAL, FACTOR, DATE, TEXT, and DATETIME.

INT, REAL, DATE, and DATETIME have publicly available bounds, representing the lower and upper limits of the data in the column. FACTOR also has bounds, representing the set of strings available in the column. BOOL and TEXT columns have no bounds.

The DataSet Class

Once we’ve established a connection to the LeapYear server using the
Client class, we can import the
DataSet to access and analyze tables.

>>> from leapyear import DataSet

We can access tables, either using the client interface as above:

>>> ds_example1 = DataSet.from_table(example1)

or by directly referencing the table by name:

>>> ds_example1 = DataSet.from_table('tutorial.regression1')

The DataSet class is the primary way of interacting
with data in the LeapYear system. A DataSet is associated with
collection of Attributes, which can
be used to compute statistics. The
DataSet class allows the user to manipulate and analyze the attributes of
a data source using a variety of relational operations such as
column selection, row selection based on conditions, unions, joins, etc.

An instance of the Attribute class represents either an individual named
column in the DataSet or a transformation of one or several of such
columns via supported operations.
Attributes also have types, which can be inspected the same as the types in a DataSet schema.
Attributes can be manipulated using most built in Python operations, such as +, *, and abs.

>>> ds_example1.schema
Schema([('x0', AttributeType(name='REAL', nullable=False, domain=(-4, 4))),
 ('x1', AttributeType(name='REAL', nullable=False, domain=(-4, 4))),
 ('x2', AttributeType(name='REAL', nullable=False, domain=(-4, 4))),
 ('y', AttributeType(name='REAL', nullable=False, domain=(-400, 400)))])
>>> ds_example1.schema['x0']
AttributeType(name='REAL', nullable=False, domain=(-4, 4))
>>> ds_example1.schema['x0'].name
'REAL'
>>> ds_example1.schema['x0'].nullable
False
>>> ds_example1.schema['x0'].domain
(-4.0, 4.0)
>>> attr_x0 = ds_example1['x0']
>>> attr_x0
<Attribute: x0>
>>> attr_x0 + 4
<Attribute: x0 + 4>
>>> attr_x0.type
AttributeType(name='REAL', nullable=False, domain=(-4, 4))
>>> attr_x0.type.name
'REAL'
>>> attr_x0.type.nullable
False
>>> attr_x0.type.domain
(-4.0, 4.0)

In the following example, we’ll take a few attributes from the table
tutorial.regression1, adding one to the x1 attribute and multiplying
x2 by three. The bounds are altered to reflect the change.

>>> ds1 = ds_example1.map_attributes(
... {'x1': lambda att: att + 1.0, 'x2': lambda att: att * 3.0}
...)
>>> ds1.schema
Schema([('x0', AttributeType(name='REAL', nullable=False, domain=(-4, 4))),
 ('x1', AttributeType(name='REAL', nullable=False, domain=(-3, 5))),
 ('x2', AttributeType(name='REAL', nullable=False, domain=(-12, 12))),
 ('y', AttributeType(name='REAL', nullable=False, domain=(-400, 400)))])

We can use DataSet to filter the data to examine subsets
of the data, e.g. by applying predicates to the data:

>>> ds2 = ds_example1.where(ds_example1['x1'] > 1)
>>> ds2.schema
Schema([('x0', AttributeType(name='REAL', nullable=False, domain=(-4, 4))),
 ('x1', AttributeType(name='REAL', nullable=False, domain=(1, 4))),
 ('x2', AttributeType(name='REAL', nullable=False, domain=(-4, 4))),
 ('y', AttributeType(name='REAL', nullable=False, domain=(-400, 400)))])

Data Analysis

Statistics

The LeapYear system is designed to allow access to various statistical
functions and develop machine learning models based on data in DataSet.
The analytics function is not executed until the run() method is called on it. This
allows inspection of the overall workflow and early reporting of errors. All analysis
functions are located in the leapyear.analytics module.

>>> import leapyear.analytics as analytics

Many common statistics functions are available including:

	count()

	count_distinct()

	median()

	min()

	max()

	mean()

	sum()

	variance()

	histogram()

Next is an example of obtaining simple statistics from the dataset:

>>> mean_analysis = analytics.mean('x0', ds_example1)
>>> mean_analysis.run()
0.039159280186637294
>>> variance_analysis = analytics.variance('x0', ds_example1)
>>> variance_analysis.run()
1.0477940098374177
>>> quantile_analysis = analytics.quantile(0.25, 'x0', ds_example1)
>>> quantile_analysis.run()
-0.6575000000000001

By combining statistics with the ability to transform and filter data, we can
look at various statistics associated to subsets of the data:

>>> analytics.mean('x0', ds_example1).run()
0.039159280186637294
>>> ds2 = ds_example1.where(ds_example1['x1'] > 1)
>>> analytics.mean('x0', ds2).run()
0.14454229785771325

Machine Learning

The leapyear.analytics module also supports various machine learning (ML)
models, including

	regression-based models (linear, logistic, generalized),

	tree-based models (random forests for classification and regression tasks),

	unsupervised models (e.g. K-means, PCA),

	the ability do optimize model hyperparemeters via search with cross-validation, and

	the ability to evaluate model performance based on a variety of common validation metrics.

In this section we will share some examples of the machine learning tools
provided by the LeapYear system.

The Effect of L2 Regularization on Model Coefficients

The following example code shows a common theoretical result from ML: as the L2
regularization parameter alpha increases, we see the coefficients of the model gradually approach zero.
This is depicted in the graph generated below:

>>> n_alphas = 20
>>> alphas = np.logspace(-2,2, n_alphas)
>>>
>>> # example3 has 0 and 1 in the y column. Here, we convert 1 to True and 0 to False
>>> ds_example3 = DataSet\
... .from_table('tutorial.classification')\
... .map_attribute('y', lambda att: att.decode({1: True}).coalesce(False))
>>>
>>> models = []
>>> for alpha in alphas:
... model = analytics.generalized_logreg(
... ['x0','x1','x2','x3','x4','x5','x6','x7','x8','x9'],
... 'y',
... ds_example3,
... affine=False,
... l1reg=0.001,
... l2reg=alpha
...).run()
... models.append(model)
>>>
>>> coefs = np.array([np.append(m.coefficients, m.intercept) for m in models]).reshape((n_alphas,11))

Plotting the coefficients with respect to alpha values:

>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> plt.plot(alphas, coefs)
>>> plt.xscale('log')
>>> plt.xlabel('alpha')
>>> plt.ylabel('weights')
>>> plt.title('coefficients as a function of the regularization')
>>> plt.axis('tight')
>>> plt.show()

[image: L2 Coefficients]

Training a Simple Logistic Regression Model

This example shows how to compute a logistic regression classifier and evaluate
it’s performance using the receiver operating characteristic (ROC) curve.

>>> ds_train = ds_example3.split(0, [80, 20])
>>> ds_test = ds_example3.split(1, [80, 20])
>>> glm = analytics.generalized_logreg(['x1'], 'y', ds_train, affine=True, l1reg=0, l2reg=0.01).run()
>>> cc = analytics.roc(glm, ['x1'], 'y', ds_test, thresholds=32).run()

Plot the ROC and display the area under the ROC:

>>> plt.figure()
>>> plt.plot(cc.fpr, cc.tpr, label='ROC curve (area = %0.2f)' % cc.auc_roc)
>>> plt.plot([0, 1], [0, 1], 'k--')
>>> plt.xlabel('False Positive Rate')
>>> plt.ylabel('True Positive Rate')
>>> plt.title('Receiver operating characteristic example')
>>> plt.legend(loc="lower right")
>>> plt.show()

[image: ROC curve]

Training a Random Forest

In this example we train a random forest classifier on a binary classification
problem associated to two overlapping gaussian distributions centered at (0,0) and (3,3).
Points around (0,0) are labeled as in the negative class while points around (3,3) are
labeled as in the positive class.

>>> ds_example4 = DataSet.from_table('tutorial.twoclass')
>>> rf = analytics.random_forest(['x1', 'x2'], 'y', ds_example4, 100, 1).run()

>>> plot_colors = "br"
>>> plot_step = 0.1
>>>
>>> x_min, x_max = 1.5-8, 1.5+8
>>> y_min, y_max = 1.5-8, 1.5+8
>>> xx, yy = np.meshgrid(
... np.arange(x_min, x_max, plot_step),
... np.arange(y_min, y_max, plot_step)
...)
>>> Z = rf.predict(np.c_[xx.ravel(), yy.ravel()])
>>> Z = Z.reshape(xx.shape)

Plot the decision boundary:

>>> fig, ax = plt.subplots()
>>> plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
>>> # Draw circles centered at the gaussian distributions
>>> ax.add_artist(plt.Circle((0,0), 1.5, color='k', fill=False))
>>> ax.add_artist(plt.Circle((3,3), 1.5, color='k', fill=False))
>>> ax.text(3, 3, '+')
>>> ax.text(0, 0, '-')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.title('Decision Boundary')

[image: Decision boundary]
This concludes the user tutorial section, so the connection should be closed.

>>> client.close()
>>> client.connected
False

Management and Administration

Administration tasks use the Client class from the
leapyear module and admin classes from the
leapyear.admin. These admin classes include:

	User

	Database

	Table

	Column

These classes provide API’s for various administrator tasks on the LeapYear system. All of the
examples in the administrative examples section will require correct permissions.

Managing the LeapYear Server

Management requires sufficient privileges.
The examples below assume the lyadmin user is an administrator of the
LeapYear deployment system.

>>> client = Client(url, 'lyadmin', ROOT_PASSWORD)
>>> client.connected
True

User Management

User objects are used as the primary API for managing users. Below
is an example of a user being created, their password updated, and finally
their account is disabled.

>>> # Create the user
>>> user = User('new_user', password)
>>> client.create(user)
>>> 'new_user' in client.users
True
>>>
>>> # Update the user's password
>>> new_password = '{}100'.format(password)
>>> user.update(password=new_password)
<User new_user>
>>>
>>> # Disable the user
>>> user.enabled
True
>>>
>>> user.enabled = False
>>> user.enabled
False

Database Management

Database objects are used to view and manipulate databases on the server.

>>> # create database
>>> client.create(Database('sales'))
>>>
>>> # retrieve a reference to the database
>>> sales_database = client.databases['sales']
>>>
>>> # drop database
>>> client.drop(sales_database)

Table Management

Table objects are used to view and manipulate tables in a database on
the server. Below is an example of how to define a data source (table) object
on the LeapYear server.

>>> credentials = 'hdfs:///path/to/data.parquet'
>>>
>>> # create a table
>>> accounts = Database('accounts')
>>> table = Table('users', credentials=credentials, database=accounts)
>>>
>>> client.create(accounts)
>>> client.create(table)
>>>
>>> # retrieve a reference to the table
>>> users_table = accounts.tables['users']
>>>
>>> # drop a table
>>> client.drop(users_table)

LeapYear Python API

	Module leapyear
	Connecting to the server

	Create a User

	Create a Database

	Create a Table

	The Client class

	Module leapyear.admin
	Database class

	Table class

	ColumnDefinition class

	TableColumn class

	View class

	User class

	Privacy Profile class

	Permission objects

	Module leapyear.admin.grants
	Access Summaries

	Functions

	Module leapyear.jobs
	Inspecting Job status

	Module leapyear.dataset
	DataSet class

	Attribute class

	Aliases

	Grouping and Windowing classes

	Module leapyear.functions
	Datetime functions

	Math functions

	Non-aggregate functions

	String functions

	Windowing functions

	Module leapyear.feature
	OneHotEncoder class

	BoundsScaler class

	BoundsAbsScaler class

	MinMaxScaler class

	MaxAbsScaler class

	StandardScaler class

	ScaleTransformModel class

	Normalizer class

	Winsorizer class

	Bucketizer class

	Module leapyear.analytics
	Data Analysis

	Machine Learning
	Unsupervised learning

	Supervised learning

	Context Managers

	Save/Load Models

	Module leapyear.analytics.classes
	Analysis Classes
	Main Classes

	Analysis Subclasses

	Rich Results

	Aggregate Results

	Module leapyear.model
	Regression-Based Models

	Tree-Based Models

	Clustering Models

	Model Evaluation Objects

	Module leapyear.exceptions

	Module leapyear.ext
	Quick client

Module leapyear

The LeapYear Client connects the python API to the LeapYear server.

While connected to the server, the connection information is stored in a resource
manager, so direct access to the client is not necessary for all operations.

The main objects that can be directly accessed by the Client
object are databases, users and permissions resources. Many
resources are cached to reduce network latency, however the load()
methods for resource objects will force refreshing of the metadata.

>>> from leapyear import Client
>>> from leapyear.admin import Database, Table, ColumnDefinition

Connecting to the server

	Method 1 - manually open and close the connection.

>>> SERVER_URL = 'https://ly-server:4401'
>>> client = Client(url=SERVER_URL)
>>> print(client.databases)
{}
>>> client.close()

	Method 2 - Use a context to automatically close the connection.

>>> with Client(url=SERVER_URL) as client:
... print(client.databases)
{}

Create a User

There are two ways to create an object on the LeapYear server. The first is to
invoke the Client.create() method.

>>> with Client(url=SERVER_URL) as client:
... client.create(User('new_user', 'password'))

The second is to call the create() method on the object.

>>> with Client(url=SERVER_URL) as client:
... User('new_user', 'password').create()

Create a Database

>>> with Client(url=SERVER_URL) as client:
... db = Database('db_name')
... client.create(db)
... print(db.tables)
{}

Create a Table

>>> TABLE_CREDENTIALS = 'hdfs://path/to/data.parq'
>>> columns = [
>>> ColumnDefinition('x', type="REAL", bounds=(-3.0, 3.0)),
>>> ColumnDefinition('y', type="BOOL"),
>>>]
>>> with Client(url=SERVER_URL) as client:
... tbl = Table(
... 'tbl_name',
... columns=columns,
... credentials=TABLE_CREDENTIALS,
... database=db,
...)
... tbl.create()

The Client class

	
class leapyear.client.Client(url='http://localhost:4401', username=None, password=None, *, authenticate=<function ly_login>, default_analysis_caching=True, default_allow_max_budget_allocation=True, public_key_auth=False)

	A class that wraps a connection to a LeapYear system.

	
__init__(url='http://localhost:4401', username=None, password=None, *, authenticate=<function ly_login>, default_analysis_caching=True, default_allow_max_budget_allocation=True, public_key_auth=False)

	Initialize a Client object.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URL of LeapYear Core. Automatically set to the value of the LY_API_URL
environment variable or http://localhost:4401 if not specified.

	username (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional username to pass to the authenticate parameter

	password (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional password to pass to the authenticate parameter

	authenticate (AuthenticateFn) – A callback that should log in the user and return a LeapYear token. By default,
logs in with the username and password of a LeapYear user, if username and password
are provided. Otherwise, uses the token in the LY_JWT environment variable.

	default_analysis_caching (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to cache analysis results by default.

	default_allow_max_budget_allocation (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running analyses on data sets that will automatically consume
near the maximum privacy exposure per computation. If enabled, computations on
small data sets that use the maximum privacy exposure will be blocked by default.
This behavior can be overwritten at the computation level.

	public_key_auth (bool [https://docs.python.org/3/library/functions.html#bool]) – Use public key auth to authenticate requests to the LeapYear API. Requires setup
via the API setup instructions [https://guides.leapyear.io/docs/api-access].

	Raises

	
	AuthenticationError – when login fails.

	InvalidURL – when the url parameter is formatted incorrectly.

	
close()

	Close the LeapYear connection.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
logout()

	Logout and prevent any further actions using the current token.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
clear_analysis_cache()

	Clear all analyses from the cache.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
clear_all_caches()

	Clear all of the caches.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
count_analysis_cache()

	Return the number of analyses in the analysis cache.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
unpersist_all_relations()

	Clear all cached datasets.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property logger

	Get the Logger object for the client.

	Return type

	Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

	
property url

	Get the URL of the connection.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property username

	Get the user currently logged in the server.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property connected

	Check if the client can successfully connect + authenticate to the LeapYear system.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property status

	Get the status of the Client’s connection to the LeapYear system.

	Return type

	ClientStatus

	
create(obj, ignore_if_exists=False, drop_if_exists=False)

	Create an object on the LeapYear server.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
create_async(obj)

	Create an object on the LeapYear server asynchronously.

	Return type

	AsyncJob

	
update(obj, **kwargs)

	Update an object on the LeapYear server.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
drop(obj, ignore_missing=False)

	Drop an object on the LeapYear server.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property privacy_profiles

	Get all privacy profiles available on the server.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], PrivacyProfile]

	
property databases

	Get all databases available on the server.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Database]

	
property current_user

	Get the currently logged in user.

	Return type

	User

	
property users

	Get users available on the server.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], User]

	
property groups

	Get groups available on the server.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Group]

	
property jobs

	Get running jobs on the server.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][AsyncJobInformation]

	
property recent_finished_jobs

	Get the most recent finished jobs on the server.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][AsyncJobInformation]

Module leapyear.admin

Administrative objects for LeapYear.

Database class

	
class leapyear.admin.Database(name, *, description=None, privacy_profile=None, privacy_limit=None, db_id=None)

	Database object.

	
classmethod all()

	Get all databases.

	Returns

	Iterator over all of the databases available on the server.

	Return type

	all_databases

	
property id

	Get the ID.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property tables

	Get the tables of the database.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Table]

	
property views

	Get the views of the database.

This property can only be seen by admins

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], View]

	
property privacy_params

	Get the privacy parameter of the database.

	Return type

	PrivacyProfileParams

	
property description

	Get the database’s description.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
property privacy_profile

	Get the database’s Privacy Profile.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
set_privacy_profile(privacy_profile)

	Set the database’s privacy profile asynchronously.

	Parameters

	privacy_profile (PrivacyProfile) – The new privacy profile.

Example

>>> db = c.databases["db1"]
>>> pp = c.privacy_profiles["Custom profile 1"]
>>> db.set_privacy_profile(pp)

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
get_privacy_limit()

	Get the database’s privacy limit.

	Return type

	PrivacyLimit

	
set_privacy_limit(privacy_limit)

	Set the database’s privacy limit.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
load()

	Load the database.

	
create(*, ignore_if_exists=False)

	Create the database.

	Return type

	Database

	
drop(*, ignore_missing=False)

	Drop the database.

	
get_access(subject=None)

	Get the access level of the given subject.

	Parameters

	subject (Union [https://docs.python.org/3/library/typing.html#typing.Union][User, Group, None [https://docs.python.org/3/library/constants.html#None]]) – A User or Group object. If none is provided, use the currently logged in user.

	Return type

	DatabaseAccessType

	
set_access(subject, access)

	Grant the given access level to a subject.

	Parameters

	
	subject (Union [https://docs.python.org/3/library/typing.html#typing.Union][User, Group]) – A User or Group object.

	access (DatabaseAccessType) – The access level to grant.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property name

	Get the name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Table class

	
class leapyear.admin.Table(name, *, database, columns=None, credentials=None, description=None, public=None, table_id=None, watch_folder=None, **kwargs)

	Table object.

	
__init__(name, *, database, columns=None, credentials=None, description=None, public=None, table_id=None, watch_folder=None, **kwargs)

	Initialize a Table object.

	Parameters

	
	name – The table name.

	columns – The columns to create the Table with. If no columns provided, the
schema will be auto detected from the data.

	credentials – The credentials to the first data slice to be added to the Table.

	description – The table’s description.

	database – The database this table belongs to.

	public – Whether this table should be a public table.

	watch_folder – When True, the ‘credentials’ parameter should point to a directory of
parquet files that will be watched for automatic data slice uploads.
Only applicable for table creation.

	
property id

	Get the ID.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property status

	Get the status of the table.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property status_with_error

	Get the status of the table and potentially the error information.

	Return type

	TableStatus

	
property columns

	Get the columns of the table.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], TableColumn]

	
property description

	Get the table’s description.

	
property database

	Get the database the table belongs to.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property public

	Identify whether the table is a public table.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_privacy_limit()

	Show the privacy limit associated with the table.

Returns a value of None when the table is public.

	
set_privacy_limit(privacy_limit)

	Set the privacy limit associated with the table.

Throws an error when the table is public.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property privacy_spent

	Show the privacy spent for the current user on this table as a percentage.

Returns the privacy spent (𝜀) associated with all the information disclosed so
far by the LeapYear platform to the current user working with this table. The value is
represented as a percentage of the privacy limit (0, 10, 20, …100) set by
the administrator. The value can exceed 100% if the admin forcibly lowers the privacy limit
below the current user’s privacy spent. No queries can be run on a table where the
privacy spent is at or above 100%.

If the table is public, returns None instead.

	Returns

	Privacy exposure, expressed as a percentage of the limit.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

	Review the current level of privacy spent.

>>> from leapyear.admin import Database, Table
>>> db = Database('db')
>>> t = Table('table', database=db)
>>> print(t.privacy_spent)
50

	
get_user_privacy_spent(user)

	Show the privacy spent for a user on this table.

Returns the privacy spent (𝜀), as a float, associated with all the information
disclosed so far by the LeapYear platform to a user working with this table, and the
privacy limit as an (𝜀, 𝛿) pair in a PrivacyLimit object.

Returns None instead, if the table is public.

This method is only available to authorized administrators, or to a user attempting to
retrieve their own privacy spent.

	
set_user_privacy_limit(user, privacy_limit)

	Allow the administrator to set the privacy limit for a user on this table.

Sets the privacy limit as a (𝜀, 𝛿) pair in a PrivacyLimit object for the user, on this
table, that is considered acceptable by the administrator. If this method is not called,
the user uses the privacy limit from the table.

If this is called with a public table, nothing happens.

This method is only available to authorized users with system admin
privileges.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
load()

	Load the table.

	
create_async()

	Create the table asynchronously.

	Return type

	AsyncJob

	
drop(*, ignore_missing=False)

	Drop the table.

	
set_all_columns_access(subject, access)

	Set the given access for all columns in the table.

If the table is public, the only legal access levels are full access and no access. Setting
any other value will result in an error.

	
property slices

	Show Data Slices for the table.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][DataSlice]

	
add_data_slice(*args, **kwargs)

	Add a data slice like add_data_slice_async, except runs synchronously.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
add_data_slice_async(file_credentials, *, update_column_bounds=False)

	Add a file to the list of data slices of the table.

	Return type

	AsyncJob

	
create(*, ignore_if_exists=False)

	Create the object synchronously.

Functionally equivalent to .create_async().wait(max_timeout_sec=None).

	Return type

	AsyncCreateable

	
property name

	Get the name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

ColumnDefinition class

	
class leapyear.admin.ColumnDefinition(name, *, type, bounds=None, nullable=False, description=None, infer_bounds=False)

	The definition of a column for creating a Table with an explicit schema.

Example usage:

>>> table = Table(
... columns=[ColumnDefinition("col1", type="INT", bounds=(0, 10))],
... ...
...)
>>> table.create()

Changing values in a ColumnDefinition has no effect after a table is
created. See the TableColumn documentation for functions to update
column attributes after creating a table.

	
name

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
type

	ColumnType

	
bounds

	ColumnBounds

	
nullable

	bool [https://docs.python.org/3/library/functions.html#bool]

	
description

	str [https://docs.python.org/3/library/stdtypes.html#str] | None

	
infer_bounds

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__new__(**kwargs)

	Create and return a new object. See help(type) for accurate signature.

TableColumn class

	
class leapyear.admin.TableColumn(*, database, table, id, name, type, bounds, nullable, description)

	A column in a table.

	
property id

	Get the id of the column.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property table

	Get the table that the column belongs to.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property database

	Get the database that the column belongs to.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property type

	Get the type of the column.

	Return type

	ColumnType

	
property bounds

	Get the bounds of the column.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][date [https://docs.python.org/3/library/datetime.html#datetime.date], date [https://docs.python.org/3/library/datetime.html#datetime.date]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]], Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
property nullable

	Get the nullability of the column.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property description

	Get the description of the column.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update(**kwargs)

	Update the Column’s type, bounds, or nullable.

All of the parameters are optional. If anything is not provided, it’s left unchanged.

	Parameters

	
	type (Union[ColumnType, str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	bounds (ColumnBounds) –

	nullable (bool [https://docs.python.org/3/library/functions.html#bool]) –

	infer_bounds (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
set_description(description)

	Set the description of the Column.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
get_access(subject=None)

	Get the access level of the given subject.

	Parameters

	subject – A User or Group object. If none is provided, use the currently logged in user.

	
set_access(subject, access)

	Grant the given access level to a subject.

If this is a column of a public table, only Full Access and No Access are legal values. Setting
any other value will result in an error.

	Parameters

	
	subject (Union [https://docs.python.org/3/library/typing.html#typing.Union][User, Group]) – A User or Group object.

	access (ColumnAccessType) – The access level to grant.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
class leapyear.admin.ColumnType(value)

	A column type.

	
BOOL = 'BOOL'

	A BOOL column has no bounds.

	
INT = 'INT'

	An INT column whose bounds should be a (int, int) pair.

	
REAL = 'REAL'

	A REAL column whose bounds should be a (float, float) pair.

	
FACTOR = 'FACTOR'

	A FACTOR column whose bounds should be a list of strings.

	
TEXT = 'TEXT'

	A TEXT column has no bounds.

	
DATE = 'DATE'

	A DATE column whose bounds should be a (datetime.date, datetime.date) pair, containing dates of the form 1970-01-31.

	
DATETIME = 'DATETIME'

	A DATETIME column whose bounds should be a (datetime.datetime, datetime.datetime) pair, containing datetimes of the form 1970-01-31T00﹕00﹕00.

	
ID = 'ID'

	An ID column has no bounds.

	
leapyear.admin.ColumnBounds

	A type alias representing the union of all possible column bounds described in ColumnType

View class

	
class leapyear.admin.View(name, *, database, dataset, num_partitions=1, partitioning_columns=[], sort_within_partitions_by_columns=[], nominal_partitioning_columns=[], description=None, **kwargs)

	View object.

A view is a dataset that can be persisted on disk (materialized), across
restarts of the LeapYear application. Analysts referencing a materialized
view will be using the dataset that is on disk, instead of re-calculating
any transformations defined on the dataset.

A guide on how to use views can be found
here [https://guides.leapyear.io/docs/managing-dataset-persistence].

Analysts should load views either from Database.views or using the
database.view notation; for example:

>>> db = client.databases['db1']
>>> view1 = db.views['view1']
>>> ds1 = DataSet.from_view(view1)

>>> ds2 = DataSet.from_view('db1.view1')

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The view’s name.
Views must have unique names, including de-materialized views. View names
cannot include any of these characters: ,;{}()=", or newlines
(\n), or tabs (\t)

	database (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Database]) – The database that the view belongs to.
This should be the database that the tables referenced in the
DataSet belong to.

	dataset (DataSet) – The DataSet that will be stored as a view.

	num_partitions – The number of partitions that the view will be split into.
This will only be used if partitioning_columns is also set.

	partitioning_columns – The columns by which to bucket (cluster) the view into partitions.
This must be used with num_partitions. The view will have
num_partitions number of partitions, and records with the same
values for the partitioning_columns will be in the same partition.

	sort_within_partitions_by_columns – The columns used to sort rows within each partition.

	nominal_partitioning_columns – The columns by which to partition the view.
This should be used by itself, without any other partition parameters.

	description (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Description of the view.

	
property database

	Get the database associated to the view.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property description

	Get the description associated to the view.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
dematerialize()

	Dematerialize the view.

This is the preferred method to free disk space used by a view.

	
load()

	Load the view.

	
create_async()

	Create the view asynchronously.

	Return type

	AsyncCreateJob

	
drop(*, ignore_missing=False)

	Drop (and unregister) the view.

Admins should NOT drop a view unless they wish to also discard the
entries in the analysis cache associated with that view. Instead, admins
should use the dematerialize method.

	
create(*, ignore_if_exists=False)

	Create the object synchronously.

Functionally equivalent to .create_async().wait(max_timeout_sec=None).

	Return type

	AsyncCreateable

	
property name

	Get the name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

User class

	
class leapyear.admin.User(username, password=None, *, is_root=None, enabled=None, user_id=None, subj_id=None)

	User object.

	
classmethod all()

	All Users.

	Returns

	All users on the LeapYear server.

	Return type

	Iterator[User]

	
property id

	Get the ID.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property subj_id

	Get the subject ID.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property username

	Get the username.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property is_root

	Whether the user is a root user.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property enabled

	Whether the user is enabled.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property groups

	Get the groups of a user.

	Returns

	All groups of the user on the LeapYear server.

	Return type

	List[Group]

	
load()

	Load the information for the user.

	Return type

	User

	
create(*, ignore_if_exists=False)

	Create the user.

	Return type

	User

	
update(*, password=None, enabled=None)

	Update the user.

	Return type

	User

	
property name

	Get the name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Privacy Profile class

	
class leapyear.admin.PrivacyProfile(name, *, params=None, hidden=None, verified=None, description=None, profile_id=None)

	PrivacyProfile object.

	
classmethod all()

	Get all privacy profiles.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][PrivacyProfile]

	
property id

	Get the ID.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property description

	Get the privacy profile description.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property hidden

	Get whether the profile is hidden in the Data Manager.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property verified

	Get whether the profile is verified.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property params

	Get the parameters of the privacy profile.

	Return type

	PrivacyProfileParams

	
load()

	Load the privacy profile.

	
create(*, ignore_if_exists=False)

	Create the privacy profile.

	Return type

	PrivacyProfile

	
update(params=None, hidden=None)

	Update the privacy profile’s params.

	Parameters

	
	params – The parameters to be updated.

	hidden – Whether or not the privacy profile should be hidden in Data Manager.

Permission objects

	
class leapyear.admin.DatabaseAccessType(value)

	AccessType for Databases.

	
NO_ACCESS_TO_DB = 'NO_ACCESS_TO_DB'

	Prevents user from accessing database

	
SHOW_DATABASE = 'SHOW_DATABASE'

	Allows a user to see this database and the tables it contains, including their public metadata

	
ADMINISTER_DATABASE = 'ADMINISTER_DATABASE'

	Allows a user to administer this database - e.g. add data sources, grant user access

	
class leapyear.admin.ColumnAccessType(value)

	AccessType for Columns.

	
NO_ACCESS = 'NO_ACCESS'

	Prevents user from accessing column

	
COMPUTE = 'COMPUTE'

	Allows a user to run randomized computations

	
FULL_ACCESS = 'FULL_ACCESS'

	Allows a user to run randomized computations and view and retrieve raw data

	
COMPARE = 'COMPARE'

	

Module leapyear.admin.grants

Convenience functions for retrieving grants on resources.

Access Summaries

	
class leapyear.admin.grants.DatabaseAccess(subject: Union[leapyear.admin.user.User, leapyear.admin.group.Group], database: leapyear.admin.database.Database, access: leapyear.admin.database.DatabaseAccessType)

	Access between a subject and a database.

	
subject: Union[leapyear.admin.user.User, leapyear.admin.group.Group]

	Subject

	
database: leapyear.admin.database.Database

	Database

	
access: leapyear.admin.database.DatabaseAccessType

	DatabaseAccessType

	
class leapyear.admin.grants.TableAccess(subject: Union[leapyear.admin.user.User, leapyear.admin.group.Group], table: leapyear.admin.table.Table, columns: Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], leapyear.admin.table.ColumnAccessType])

	Access between a subject and a table.

	
subject: Union[leapyear.admin.user.User, leapyear.admin.group.Group]

	Subject

	
table: leapyear.admin.table.Table

	Table

	
columns: Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], leapyear.admin.table.ColumnAccessType]

	Mapping[str, ColumnAccessType]

Functions

	
leapyear.admin.grants.all_access_on_database(db)

	Fetch the database access for all users or groups.

Examples

>>> db = client.databases['db']
>>> for subject, access_db, access in all_grants_on_database(db):
... assert isinstance(subject, User) or isinstance(subject, Group)
... assert access_db == db
... assert isinstance(access, DatabaseAccessType)
...

	Parameters

	db (Database) –

	Returns

	

	Return type

	List[DatabaseAccess]

	
leapyear.admin.grants.all_access_on_table(table)

	Fetch the column access for all columns in the given table for all users or groups.

Examples

>>> table = client.databases['db'].tables['table']
>>> for subject, access_table, columns in all_access_on_table(table):
... assert isinstance(subject, User) or isinstance(subject, Group)
... assert access_table == table
... for column_name, column_access in columns.items():
... assert isinstance(column_name, str)
... assert isinstance(column_access, ColumnAccessType)
...

	Parameters

	table (Table) –

	Returns

	

	Return type

	List[TableAccess]

	
leapyear.admin.grants.all_database_accesses_for_subject(subject)

	Fetch the access of all databases for the given subject.

Examples

>>> user = client.users['user']
>>> for subject, db, access in all_database_accesses_for_subject(user):
... assert subject == user
... assert isinstance(db, Database)
... assert isinstance(access, DatabaseAccessType)
...

	Parameters

	subject (Union [https://docs.python.org/3/library/typing.html#typing.Union][User, Group]) –

	Returns

	

	Return type

	List[DatabaseAccess]

Module leapyear.jobs

Classes for managing asynchronous jobs in LeapYear Core.

Inspecting Job status

	
class leapyear.jobs.AsyncJob(async_job_id, *, on_success=None)

	A helper for polling the result of an asynchronous job.

Represents an accessor for an asynchronous job on the LeapYear server. It contains a
unique job_id for a specific job and methods to check the results of or cancel
the job at a later time.

	
class leapyear.jobs.AsyncJobStatus(status: AsyncJobState, result: Optional[ResultOrError], start_time: datetime, end_time: Optional[datetime])

	Result of checking the status of an asynchronous job.

	
status

	The current status of the job.

	Return type

	AsyncJobState

	
result

	None if the job is still running, otherwise either the JobResult or a
APIError error.

	Return type

	Optional[ResultOrError]

	
start_time

	The time the job was started.

	Return type

	datetime

	
end_time

	The time the job finished, or None if the job is still running.

	Return type

	Optional[datetime]

	
property elapsed_time

	Return a timedelta representing the amount of time taken by the analysis.

	Return type

	timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	
class leapyear.jobs.AsyncJobState(value)

	The current state of a job.

	
AsyncJobStateRunning = 'AsyncJobStateRunning'

	

	
AsyncJobStateFinished = 'AsyncJobStateFinished'

	

	
AsyncJobStateFailed = 'AsyncJobStateFailed'

	

	
AsyncJobStateCancelled = 'AsyncJobStateCancelled'

	

Module leapyear.dataset

DataSet and Attribute.

DataSets combine a data source (Table) with data transformations
which subsequent computations can be performed on. A data set has a schema
which describes the types of attributes (columns) in the data source.
Attributes can be manipulated as if they were built-in python types (int,
float, bool, …). DataSet also provides the following lazy methods for
transforming data:

	project(): select one or more attributes (columns) from the data source.

	where(): select rows that satisfy a filter condition.

	union(): combine two data sets with matching schemas.

	split(): create subsets whose size is a fraction of the total data size.

	splits(): yield all fractional partitions of the data set.

	stratified(): create subsets of the data with fixed attribute prevalence.

	group_by(): create aggregated views of the data set.

	join(): combine rows of two datasets where certain data elements match.

	transform(): apply a linear transformation to the specified data elements.

Further details for each transformation can be found in their respective
documentation below. Transformations are lazy in the sense that they are not
evaluated until a computation is executed; however, each transformation
requires DataSet schema to be re-evaluated, which relies on a live connection
to the LeapYear server.

Computations and machine learning analytics that process the data set are found
in leapyear.analytics.

The examples below rely on a connection to LeapYear server, which can be
established as follows:

>>> from leapyear import Client
>>> client = Client(url='http://ly-server:4401', username='admin', password='password')

Examples

	Load a dataset and examine its schema:

>>> pds = DataSet.from_table('db.table')
>>> pds.schema
OrderedDict([
 ('attr1', Type(tag=BOOL, contents=())),
 ('attr2', Type(tag=INT, contents=(0, 20))),
 ('attr3', Type(tag=REAL, contents=(-1, 1))),
])
>>> pds.attributes
['attr1', 'attr2', 'attr3']

	Create a new attribute and find its type:

>>> pds['attr2_gt_10'] = pds['attr2'] > 10
>>> pds.attributes
['attr1', 'attr2', 'attr3', 'attr2_gt_10']
>>> pds.schema['attr2_gt_10']
Type(tag=BOOL, contents=())

	Select instances using a predicate:

>>> pds_positive_attr3 = pds.where(pds['attr3'] > 0)
>>> pds_positive_attr3.schema['attr3']
Type(tag=REAL, contents=(0, 1))

	Calculate the mean of a single attribute:

>>> import leapyear.analytics as analytics
>>> mean_analysis = analytics.mean(pds_positive_attr3['attr3'])
>>> mean_analysis
computation: MEAN(attr3 > 0)
attributes:
 attr3: db.table.attr3 (0 <= x <= 1)
>>> mean_analysis.run() # run the computation on the LeapYear server.
0.02

DataSet class

	
class leapyear.dataset.DataSet(relation)

	DataSet object.

	
property relation

	Get the DataSet relation.

	Return type

	Relation

	
property schema

	Get the DataSet schema, including data types, values allowed.

	Return type

	Schema

	
classmethod from_view(cls, view)

	Create a dataset from a view.

	Parameters

	view (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], View]) – The view or the name of the view on the LeapYear server.

	Returns

	The dataset with a LeapYear view as its source.

	Return type

	DataSet

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
classmethod from_table(table, *, slices=None, all_slices=False)

	Create a dataset from a table.

	Parameters

	
	table – The table or the name of the table on the LeapYear server.

	slices – A list of ranges of table slices to use.

	all_slices – Set to True to use all slices in the Table at the time this is run.
Note that if a new slice has been added, this will create a DataSet
with the new slice, causing analyses to miss the analysis cache when
rerunning.

	Returns

	The dataset with a LeapYear table as its source.

	Return type

	DataSet

	
property attributes

	Return the DataSet attributes.

	Return type

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Attribute]

	
get_attribute(key)

	Select one attribute from the data set.

	Parameters

	key (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Attribute]) – The item to project.

	Returns

	The projected attribute.

	Return type

	Attribute

	
drop_attributes(keys)

	Drop Attributes.

	Parameters

	keys (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of attribute names to drop.

	Returns

	New DataSet without the specified attributes.

	Return type

	DataSet

	
drop_attribute(key)

	Drop an attribute.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute name to drop.

	Returns

	New DataSet without the specified attribute.

	Return type

	DataSet

	
with_attributes(name_attrs)

	Return a new DataSet with additional attributes.

	Parameters

	name_attrs (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – A dictionary associating new attribute names to expressions.
Attribute expressions can include python literals and references
to existing attributes.

	Returns

	The DataSet with new attributes appended.

	Return type

	DataSet

	
with_attribute(name, attr)

	Return a new DataSet with an additional attribute.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the new attribute

	attr (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Attribute expression, can include python literals and references
to existing attributes.

	Returns

	New DataSet with new attribute appended.

	Return type

	DataSet

	
with_attributes_renamed(rename)

	Rename attributes using a mapping.

	Parameters

	rename (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Dictionary mapping old names to new names.

	Returns

	New DataSet with renamed attributes.

	Return type

	DataSet

Examples

1. Create new dataset ds2 with renamed columns ‘ZipCode’ and ‘Name’ which were
named ‘zip_code’ and ‘name’ respectively. Similarly, rename attributes in another
dataset ds3. Then, finally these datasets can be merged using union:

>>> ds2 = ds1.with_attributes_renamed({'zip_code':'ZipCode','name':'Name'})
>>> ds4 = ds3.with_attributes_renamed({'zipcode':'ZipCode','name_str':'Name'})
>>> ds4 = ds4.union(ds2)

	
with_attribute_renamed(old_name, new_name)

	Rename an attribute.

	Parameters

	
	old_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Old attribute name.

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – New attribute name.

	Returns

	New DataSet with this attribute renamed.

	Return type

	DataSet

	
map_attributes(name_lambdas)

	Map attributes and create a new DataSet.

	Parameters

	name_lambdas (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Attribute], Attribute]]) – Mapping from attribute names to functions.

	Returns

	New DataSet with mapped attributes.

	Return type

	DataSet

	
map_attribute(name, func)

	Map an attribute and create a new DataSet.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute name to map.

	func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Attribute], Attribute]) – Function to convert the attribute.

	Returns

	New DataSet with mapped attributes.

	Return type

	DataSet

	
project(new_keys)

	Select multiple attributes from the data set.

Projection (π): Creates a new DataSet with only selected attributes
from this DataSet.

	Parameters

	new_keys (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The list of attributes.

	Returns

	The new DataSet containing only the selected attributes.

	Return type

	DataSet

	
select(*attrs)

	Create a new DataSet by selecting column names or Attributes.

	Parameters

	attrs (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Attribute]) – Attribute name(s) or Attribute object(s), separated by comma.

	Returns

	The new DataSet containing the selected attributes.

	Return type

	DataSet

	
select_as(mapping)

	Create a new DataSet by mapping from column names or Attributes to new names.

	Parameters

	mapping (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Attribute]]) – A dictionary associating new attribute names to expressions.
Attribute expressions can include python literals and references
to existing attributes.

	Returns

	The new DataSet containing the selected attributes.

	Return type

	DataSet

	
where(clause)

	Select/filter rows using a filter expression.

Selection (σ): LeapYear’s where clause creates a new DataSet based on
the filter condition. Its schema may include smaller domain of
possible values.

	Parameters

	clause (Attribute) – A filter Attribute: a single attribute of type BOOL.

	Returns

	A filtered DataSet.

	Return type

	DataSet

	
union(other, distinct=False)

	Union or concatenate datasets.

Union (∪): Concatenates data sets with matching schema.

	Parameters

	
	other (DataSet) – The dataset to union with. Note: schema of other must match that
of self, including the order of the attributes. The order of
attributes can be aligned like so:

>>> ds2 = ds2[list(ds1.schema.keys())]
>>> ds_union = ds1.union(ds2)

	distinct (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove duplicate rows.

	Returns

	A combined dataset.

	Return type

	DataSet

	
join(other, on, right_on=None, join_type='inner', unique_left_keys=False, unique_right_keys=False, left_suffix='', right_suffix='', **kwargs)

	Combine two DataSets by joining using a key, as in SQL JOIN statement.

If right_k (or left_k) is specified, the right (or left) data set
will include no more than k rows for each matching row in the left
(or right) data set.

	Parameters

	
	other (DataSet) – The other DataSet to join with.

	on (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key(s) to join on.
If using suffixes, the suffix must NOT be appended by the caller.

	right_on (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], None [https://docs.python.org/3/library/constants.html#None]]) – The key(s) on the right table, if different than those in on.
None if both tables have the same key names.
If using suffixes, the suffix must NOT be appended by the caller.

	join_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – LeapYear supports a variety of joins listed in the left column in the table below.
Any value of join_type from the right column will use that particular join.
If no value is specified, an inner join will be used. A left_outer_public join can
be run only on a right public table.

	Join

	join_type

	Inner

	"inner" (default)

	Outer

	"outer", "full", "full_outer", or "fullouter"

	Left

	"left", "left_outer", or "leftouter"

	Right

	"right", "right_outer", or "rightouter"

	Left Antijoin

	"left_anti" or "leftanti"

	Left Semijoin

	"left_semi" or "leftsemi"

	Left Outer Public

	"left_outer_public"

	unique_left_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – If the left DataSet is known to have unique keys, setting this to
True will run an optimized join algorithms.
Warning: Setting this to True if the keys are not unique will
cause data loss!

	unique_right_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – If the right DataSet is known to have unique keys, setting this
to True will run an optimized join algorithms.
Warning: Setting this to True if the keys are not unique will
cause some data rows to not show up in the output DataSet!

	left_suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional suffix to append to the column names of the left
DataSet.

	right_suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional suffix to append to the column names of the right
DataSet.

	-> cache (kwargs) – Optional StorageLevel for persisting intermediate datasets for
performance enhancement.
The meaning of these values is documented in
the Spark RDD programming guide [https://spark.apache.org/docs/2.4.5/rdd-programming-guide.html#rdd-persistence].

	Returns

	The joined DataSet.

	Return type

	DataSet

Examples

	Joining two datasets on a common key:

>>> ds1 = example_ds1.project(['key', 'col1'])
>>> ds2 = example_ds2.project(['key', 'col2'])
>>> ds = ds1.join(ds2, 'key')
>>> list(ds.schema.keys())
['key', 'col1', 'col2']

	Joining two datasets on a single key but with a different name on the right:

>>> ds1 = example_ds1.project(['key1', 'col1'])
>>> ds2 = example_ds2.project(['key2', 'col2'])
>>> ds = ds1.join(ds2, 'key1', right_on='key2')
>>> list(ds.schema.keys())
['key1', 'col1', 'key2', 'col2']

	Joining when a column is duplicated is an error:

>>> ds1 = example_ds1.project(['key', 'col1', 'col3'])
>>> ds2 = example_ds2.project(['key', 'col2', 'col3'])
>>> ds = ds1.join(ds2, 'key')
APIError: Invalid schema: repeated aliases: col3

4. Joining when the key is missing from one relation:
Fails because in this case a right key has to be specified.

>>> ds1 = example_ds1.project(['key1', 'col1'])
>>> ds2 = example_ds2.project(['key2', 'col2'])
>>> ds = ds1.join(ds2, 'key1')
APIError: Error parsing scope, missing variable declaration for `key1`

	Joining with multiple keys:

>>> ds1 = example_ds1.project(['key1_1', 'key2_1', 'col1'])
>>> ds2 = example_ds2.project(['key1_2', 'key2_2', 'col2'])
>>> ds = ds1.join(ds2, ['key1_1', 'key2_1'], right_on=['key1_2', 'key2_2'])
>>> list(ds.schema.keys())
['key1_1', 'key2_1', 'col1', 'key1_2', 'key2_2', 'col2']

	Joining with different number of keys results in an error:

>>> ds1 = example_ds1.project(['key1_1', 'key2_1', 'col1'])
>>> ds2 = example_ds2.project(['key1_2', 'key2_2', 'col2'])
>>> ds = ds1.join(ds2, ['key1_1', 'key2_1'], right_on='key1_2')
APIError: Invalid schema: join key length mismatch ...

	Joining with specifying that the keys are unique:

>>> ds1 = example_ds1.project(['key1', 'col1'])
>>> ds2 = example_ds2.project(['key1', 'col2'])
>>> ds = ds1.join(ds2, 'key1', unique_left_keys=True, unique_right_keys=True)
>>> list(ds.schema.keys())
['key1', 'col1', 'col2']

	Different join types:

>>> ds1 = example_ds1.project(['key1', 'col1'])
>>> ds2 = example_ds2.project(['key1', 'col2'])
>>> ds = ds1.join(ds2, 'key1', join_type='outer')
>>> list(ds.schema.keys())
['key1', 'col1', 'col2']

	Left semi join:

>>> ds1 = example_ds1.project(['key1', 'col1'])
>>> ds2 = example_ds2.project(['key1', 'col2'])
>>> ds = ds1.join(ds2, 'key1', join_type='left_semi')
>>> list(ds.schema.keys())
['key1', 'col1']

	Joining when the nullability of keys is different:

>>> ds1 = example_ds1.select([col('key1').decode({0: 0}).alias('nkey1'), 'col1'])
>>> ds2 = example_ds2.project(['key2', 'col2'])
>>> ds = ds1.join(ds2, 'nkey', right_on='key2')
>>> list(ds.schema.keys())
['nkey1', 'col1', 'key2', 'col2']

	Joining when keys have different but coercible types:

>>> realKey1 = col('intKey1').as_real().alias('realKey1')
>>> ds1 = example_ds1.select([realKey1, 'col1'])
>>> ds2 = example_ds2.project(['intKey2', 'col2'])
>>> ds = ds1.join(ds2, 'realKey1', right_on='intKey2')
>>> list(ds.schema.keys())
['intKey1', 'col1', 'intKey2', 'col2']

	Joining when keys are factors (upcasted to common type):

>>> keyFactor1 = col('key1').decode({k: 'A' for k in range(10)}).
>>> as_factor().alias('keyFactor1')
>>> keyFactor2 = col('key2').decode({k: 'B' for k in range(10)}).
>>> as_factor().alias('keyFactor2')
>>> ds1 = example_ds1.select([keyFactor1, 'col1'])
>>> ds2 = example_ds2.select([keyFactor2, 'col2'])
>>> ds = ds1.join(ds2, 'keyFactor1', right_on='keyFactor2')
>>> list(ds.schema.keys())
['key1', 'col1', 'key2', 'col2']

	Joining when the keys have mismatched types is an error (e.g. factor and bool):

>>> keyFactor1 = col('key1').as_factor().alias('keyFactor1')
>>> ds1 = example_ds1.project(['key1', 'col1'])
>>> ds2 = example_ds2.project(['key2', 'col2'])
>>> ds = ds1.join(ds3, 'keyFactor1', right_on='key2')
APIError: Invalid schema: join column type mismatch ...

	Joining with suffixes to disambiguate column names:

>>> ds1 = example_ds1.project(['key', 'col1'])
>>> ds2 = example_ds2.project(['key', 'col2'])
>>> ds = ds1.join(ds2, 'key', left_suffix='_l', right_suffix='_r')
>>> list(ds.schema.keys())
['key_l', 'col1_l', 'key_r', 'col2_r']

	Joining with only left suffixes to disambiguate column names:

>>> ds1 = example_ds1.project(['key', 'col1'])
>>> ds2 = example_ds2.project(['key', 'col2'])
>>> ds = ds1.join(ds2, 'key', left_suffix='_l')
>>> list(ds.schema.keys())
['key_l', 'col1_l', 'key', 'col2']

	Joining with only right suffixes to disambiguate column names:

>>> ds1 = example_ds1.project(['key', 'col1'])
>>> ds2 = example_ds2.project(['key', 'col2'])
>>> ds = ds1.join(ds2, 'key', right_suffix='_r')
>>> list(ds.schema.keys())
['key', 'col1', 'key_r', 'col2_r']

	Joining with specific cache level for intermediate caches:

>>> ds = ds1.join(ds2, on="key", cache=StorageLevel.DISK_ONLY, n_partitions=1)

	Unsupported Backends

	Conditional support for the following LeapYear compute backend(s): snowflake — All functionality available except for the ‘cache’ keyword arg.

	
prepare_join(join_on, k, n_partitions)

	Prepare DataSet for join.

	Parameters

	
	join_on (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key(s) to join on.
If using suffixes, the suffix must NOT be appended by the caller.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The k value to filter the DataSet.

	n_partitions (int [https://docs.python.org/3/library/functions.html#int]) – Number of partitions to repartition the DataSet.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	DataSet

	
unpersist_join_cache(other, on, right_on=None, join_type='inner', unique_left_keys=False, unique_right_keys=False, left_suffix='', right_suffix='', **kwargs)

	Unpersist intermediate caches used by .join().

NOTE: use same parameters as join call to unpersist

	Parameters

	
	other (DataSet) – The other DataSet to join with.

	on (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key(s) to join on.
If using suffixes, the suffix must NOT be appended by the caller.

	right_on (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], None [https://docs.python.org/3/library/constants.html#None]]) – The key(s) on the right table, if different than those in on.
None if both tables have the same key names.
If using suffixes, the suffix must NOT be appended by the caller.

	join_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – LeapYear supports a variety of joins listed in the left column in the table below.
Any value of join_type from the right column will use that particular join.
If no value is specified, an inner join will be used. A left_outer_public join can
be run only on a right public table.

	Join

	join_type

	Inner

	"inner" (default)

	Outer

	"outer", "full", "full_outer",

or "fullouter"

	Left

	"left", "left_outer", or "leftouter"

	Right

	"right", "right_outer", or "rightouter"

	Left Antijoin

	"left_anti" or "leftanti"

	Left Semijoin

	"left_semi" or "leftsemi"

	Left Outer Public

	"left_outer_public"

	unique_left_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – If the left DataSet is known to have unique keys, setting this to
True will run an optimized join algorithms.
Warning: Setting this to True if the keys are not unique will
cause data loss!

	unique_right_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – If the right DataSet is known to have unique keys, setting this
to True will run an optimized join algorithms.
Warning: Setting this to True if the keys are not unique will
cause some data rows to not show up in the output DataSet!

	left_suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional suffix to append to the column names of the left
DataSet.

	right_suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional suffix to append to the column names of the right
DataSet.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	DataSet

	
group_by(*grouping)

	Aggregate data by a categorical column(s).

	Parameters

	grouping (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Attribute]) – The attribute or attributes to group by, separated by comma.

	Returns

	A new GroupedData object with groupings as specified.
It can be used with agg function to create a DataSet with
derived aggregate attributes, see examples below.

	Return type

	GroupedData

Examples

1. Group by multiple columns (‘col1’ and ‘col2’) in Dataset ds and aggregate
‘col3’ and ‘col4’:

>>> ds_group = ds.group_by('col1', 'col2').agg((['col3'], 'count'), (['col4'], 'count'))

	Group by single column ‘col1’ in Dataset and compute aggregate of ‘col3’ and ‘col4’:

>>> ds_group = ds.group_by('col1').agg((['col3'], 'max'), (['col4'], 'mean'))

	
split(index, proportions, complement=False)

	Split and select one partition of the dataset.

Selection (σ): Splits are specified by proportions.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – The split number

	proportions (List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]) – The proportions to split the dataset by, represented as a list of
integers. For example, [1,1,2] will split into 3 datasets with
1/4, 1/4 and 1/2 of the data in each, respectively.

	complement (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, returns a DataSet which is the complement of the split
(e.g. all rows not in the split). Default: False.

	Returns

	The ith-partition of the dataset.

	Return type

	DataSet

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
splits(proportions)

	Split the dataset and return an iterator over the resulting partitions.

Selection (σ): Splits are specified by proportions.

	Parameters

	proportions (List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]) – The proportions to split the dataset by, represented as a list of
integers. For example, [1,1,2] will split into 3 datasets with
1/4, 1/4 and 1/2 of the data in each, respectively.

	Returns

	Iterator over the DataSet objects representing partitions.

	Return type

	Iterator[DataSet]

Examples

	Create 80/20 split of a Dataset ds1:

>>> traintest, holdout = ds1.splits((8,2))

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
stratified_split(index, proportions, stratified, complement=False)

	Split by stratifying a categorical attribute.

Selection (σ): Each split will contain approximately
the same proportion of values from each category.

As an example, for Boolean stratification, each split will contain
the same proportion of True/False values.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – The split number

	proportions (List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]) – The proportions to split the dataset by, represented as a list of
integers. For example, [1,1,2] will split into 3 datasets with
1/4, 1/4 and 1/2 of the data in each, respectively.

	stratified (str [https://docs.python.org/3/library/stdtypes.html#str]) – The column to stratify against. Must be Boolean or Factor.
Must not be nullable.

	complement (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, returns a DataSet which is the complement of the split
(e.g. all rows not in the split). Default: False.

	Returns

	The ith-partition of the dataset.

	Return type

	DataSet

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
stratified_splits(proportions, stratified)

	Split by stratifying a categorical attribute.

Selection (σ). For boolean stratification, each split will maintain the
same proportion of True/False values.

	Parameters

	
	proportions (List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]) – The proportions to split the dataset by, represented as a list of
integers. For example, [1,1,2] will split into 3 datasets with
1/4, 1/4 and 1/2 of the data in each, respectively.

	stratified (str [https://docs.python.org/3/library/stdtypes.html#str]) – The column to stratify against. Must be Boolean or Factor.
Must not be nullable.

	Returns

	Iterator over the DataSet objects representing partitions.

	Return type

	Iterable[DataSet]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
kfold(n_folds=3)

	Split the dataset into train/test pairs using k-fold strategy.

Each fold can then be used as a validation set once while k-1
remaining folds form the training set.
If the dataset has size N, each (train, test) pair will be sized
N*(k-1)/k and N/k respectively.

	Parameters

	n_folds (int [https://docs.python.org/3/library/functions.html#int]) – Number of folds. Must be at least 2.

	Returns

	Iterator over the k pairs of (train, test) partitions.

	Return type

	Iterable[Tuple[DataSet, DataSet]]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
stratified_kfold(stratified, n_folds=3)

	Split the dataset into train/test pairs using k-fold stratified splits.

Each fold can then be used as a validation set once while k-1
remaining folds form the training set.
If the dataset has size N, each (train, test) pair will be sized
N*(k-1)/k and N/k respectively.

	Parameters

	
	stratified (str [https://docs.python.org/3/library/stdtypes.html#str]) – The column to stratify against. Must be Boolean or Factor.
Must not be nullable.

	n_folds (int [https://docs.python.org/3/library/functions.html#int]) – Number of folds. Must be at least 2.

	Returns

	The iterator over the k pairs of (train, test) partitions.

	Return type

	Iterable[Tuple[DataSet, DataSet]]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
rows_async(*, limit=None)

	Retrieve rows.

If the user has permission to do so, the function returns a generator
of OrderedDict objects representing the attribute names and values
from each row. The generator requires connection to the server over
its entire lifetime.

	Parameters

	
	limit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Maximum number of rows to output.

	max_timeout_sec – Specifies the maximum amount of time (in seconds) the user is willing to wait for a
response. If set to None, wait will poll the server indefinitely.
Defaults to None.

	Returns

	The iterator over the rows of the input dataset, each row being
represented as an OrderedDict objects mapping attribute names
to their values in this row.

	Return type

	Iterator[Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Value]]

	
rows(limit=None, max_timeout_sec=None)

	Retrieve rows.

Same as rows_async(), except waits on the job.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Value]]

	
rows_pandas(limit=None)

	Retrieve rows as a pandas DataFrame.

	Parameters

	limit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Maximum number of rows to output.

	Returns

	The rows of the input dataset.

	Return type

	DataFrame

	
head(n=10)

	Retrieve rows, if the user has permission to do so, see rows().

	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of rows to output.

	Returns

	The iterator over the rows of the input dataset, each row being
represented as an OrderedDict objects mapping attribute names
to their values in this row.

	Return type

	Iterator[Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Value]]

	
head_pandas(n=10)

	Retrieve rows, if the user has permission to do so, see rows_pandas().

	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of rows to output.

	Returns

	The rows of the input dataset.

	Return type

	DataFrame

	
example_rows()

	Retrieve 10 rows of example data from the DataSet.

The returned data is based only on the public metadata. The generated
data does not depend on the true data at all and should not be used
for data inference.

The function requires an active connection to the LeapYear server.

Does not support TEXT attributes - consider dropping them using
drop_attributes() before running example_rows().

	Returns

	The iterator over the rows of the generated dataset; each row is
represented as an OrderedDict objects mapping attribute names
to their generated values.

	Return type

	Iterator[Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]

Example

>>> pds = DataSet.from_table('db.table')
>>> pds.example_rows()

To turn the data into a pandas DataFrame, use

>>> import pandas
>>> df = pandas.DataFrame.from_dict(pds.example_rows())

Alternatively, use example_rows_pandas().

	
example_rows_pandas()

	Retrieve 10 rows of example data from the DataSet. See example_rows().

	Returns

	The example rows.

	Return type

	DataFrame

	
transform(attrs, transformation, name)

	Apply linear transformation to a list of attributes based on a matrix.

	Parameters

	
	attrs (List [https://docs.python.org/3/library/typing.html#typing.List][Attribute]) – Expressions to use as input to the matrix multiplication, in order.

	transformation (List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]]) – Matrix to use to define linear transformation via matrix
multiplication - e.g. output of leapyear.analytics.pca().

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Common prefix for the name of the attributes to be created.

	Returns

	DataSet with transformed attributes appended.

	Return type

	DataSet

	
sample(fraction, *, with_replacement=False, seed=None)

	Return a sampled subset of the rows.

	Parameters

	
	fraction (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of rows to generate.

	with_replacement (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow sampling rows with replacement, creating duplicated rows.

	seed (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Optional seed of the random number generator. If not supplied, a
random seed will be used.

	Returns

	DataSet containing sampled subset of the rows.

	Return type

	DataSet

	
distinct()

	Return a DataSet that contains only the unique rows from this Dataset.

	Return type

	DataSet

	
drop_duplicates(subset=None)

	Return a DataSet with duplicates in the provided columns dropped.

If all columns are named or subset is None, this is equivalent to
distinct().

Errors when subset is an empty list.

	Parameters

	subset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Subset of columns, or None if all columns should be used.

	Return type

	DataSet

	
except_(ds)

	Return a DataSet of rows in this DataSet but not in another DataSet.

	Parameters

	ds (DataSet) – DataSet to compare with.

	Returns

	DataSet containing rows in this DataSet but not in another DataSet.

	Return type

	DataSet

	
difference(ds)

	Return a DataSet of rows in this DataSet but not in another DataSet.

	Parameters

	ds (DataSet) – DataSet to compare with.

	Returns

	DataSet containing rows in this DataSet but not in another DataSet.

	Return type

	DataSet

	
symmetric_difference(ds)

	Return the symmetric difference of the two DataSets.

	Parameters

	ds (DataSet) – DataSet to compare with.

	Returns

	DataSet containing rows that are not in the intersection of
the two DataSets.

	Return type

	DataSet

	
intersect(ds)

	Return intersection of the two DataSets.

	Parameters

	ds (DataSet) – DataSet to compare with.

	Returns

	DataSet containing rows that are in the intersection of
the two DataSets.

	Return type

	DataSet

	
order_by(*attrs)

	Order DataSet by the given expressions.

	Parameters

	attrs (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Attribute]) – Attribute expressions to order by, separated by commas.

	Returns

	DataSet sorted by the given expressions.

	Return type

	DataSet

	
limit(n)

	Limit the number of rows.

	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows to limit to.

	Returns

	DataSet filtered to the first n rows.

	Return type

	DataSet

	
cache(storageLevel=StorageLevel.MEMORY_AND_DISK)

	Cache a Dataset on disk on the server-side.

	Parameters

	storageLevel (StorageLevel) – StorageLevel for persisting datasets.
The meaning of these values is documented in
the Spark RDD programming guide [https://spark.apache.org/docs/2.4.5/rdd-programming-guide.html#rdd-persistence].

	Returns

	DataSet, which indicates to the system to lazily cache the DataSet

	Return type

	DataSet

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
unpersist()

	Immediately begins unpersisting the DataSet on the server-side.

	Returns

	

	Return type

	None

Example

Build a cache and unpersist it

>>> la.count_rows(ds.cache()).run()
>>> la.mean(ds["foo"]).run() # this will hit the cache
>>> ds.unpersist()
>>> la.sum(ds["foo"]).run() # this will no longer hit the cache

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
repartition(numPartitions, *attrs)

	Repartition a Dataset by hashing the columns.

	Returns

	DataSet partitioned according to the specified parameters.

	Return type

	DataSet

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
sortWithinPartitions(*attrs)

	Sorts Dataset rows by the provided columns within partitions, not globally.

	Returns

	DataSet sorted within partitions.

	Return type

	DataSet

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
replace(col, replacement)

	Replace values matching keys in replacement map.

	Parameters

	
	col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the column to work with.

	replacement (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]], Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, Expression, float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]]]) – A mapping associating each value to be replaced – with an
expression it should be replaced with.

	Returns

	New Dataset where specified values in a given column are replaced
according to the replacement map.

	Return type

	DataSet

	
fill(col, value)

	Fill missing values in a given column.

	Parameters

	
	col – The name of the column to work with.

	value (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, Expression, float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]]) – Expression to fill NULL values of the column with.

	Returns

	A new DataSet where NULL values in a given column are replaced
with the specified expression.

	Return type

	DataSet

	
drop(*cols, how='any')

	Drop rows where specified columns contain NULL values.

	Parameters

	
	cols (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Attribute]) – Attributes to consider when dropping rows.

	how (str [https://docs.python.org/3/library/stdtypes.html#str]) – If 'any', rows with NULL values in any of the specified
columns will be dropped. If 'all', rows with NULL values
in all of the specified columns will be dropped.

	Returns

	A new DataSet filtered to rows where specified columns contain
NULL values (any or all, depending on the value of the
how parameter).

	Return type

	DataSet

	
join_pandas(from_col, dataframe, key_col, value_col)

	Join a column of pandas data with the data set.

See join_data for extended details.

	Parameters

	
	from_col (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – An expression or attribute name in the data set to join the data to. The type
of this column should match the keys in the mapping.

	dataframe (DataFrame) – The pandas DataFrame that contains values to map to in this data set.
The DataFrame cannot be empty and has a limit of 100,000 rows.

	key_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the pandas column to obtain the keys to match from_col. If
duplicated keys occur, only one key from the data set is used in the join.

	value_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the pandas column to obtain the values of the mapping.

	Returns

	The original data set with a new column containing analyst-supplied values.

	Return type

	DataSet

	
join_data(from_col, new_col, mapping)

	Join key-value data to the data set.

Analyst supplied data can be added to an existing sensitive data set without a loss to
privacy. This is a replacement for the decode expression when there are many keys
(>100).

Values matching the keys of the dictionary mapping are replaced by the
associated values. Values that do not match any of the keys are replaced by NULL.
Keys and values may be python literals supported by the LeapYear client, or other
Attributes.

Note

If the combination of keys assure there should be no NULL values, the
client will not automatically convert the result of join_data to
a non-nullable type. The user must use coalesce to remove NULL
from the domain of possible values.

	Parameters

	
	from_col (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – An expression or attribute name in the data set to join the data to. The type
of this column should match the keys in the mapping.

	new_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new attribute that is added to the returned data set with the
same type as the mapping values.

	mapping (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]], Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]]]) – Python dictionary of key-value pairs to add to the data set. The keys should be unique.
The mapping cannot be empty and has a limit of 100,000 keys.

	Returns

	The original data set with a new column containing analyst-supplied values.

	Return type

	DataSet

Example

Suppose that we have a table with a Sex column containing the
values male and female:

	Sex

	Age

	male

	22

	female

	38

	female

	26

	female

	35

	male

	35

We’d like to encode the abbreviations (coming from the first letter) as a new column, coming
from a pandas DataFrame of the following form:

	Sex

	first_letter

	male

	m

	female

	f

To do so, we call this function, assuming the LeapYear DataSet is called ds,
and we wish to call the new column sex_first_letter:

new_ds = ds.join_data("Sex", "sex_first_letter", {"female": "f", "male": "m"})

This will produce a DataSet which looks like:

	Sex

	Age

	sex_first_letter

	male

	22

	m

	female

	38

	f

	female

	26

	f

	female

	35

	f

	male

	35

	m

	
predict(model, attrs=None, name='predict')

	Return a DataSet with a prediction column for the model.

	Parameters

	
	model (Union [https://docs.python.org/3/library/typing.html#typing.Union][ClusterModel, GLM, RandomForestClassifier, RandomForestRegressor, GradientBoostedTreeClassifier]) – The model to predict outcomes with.

	attrs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – The attributes to use in the transformation, or
None if all the attributes should be used.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name or common prefix of the attribute(s) to be created.

	Returns

	The original dataset with the prediction column(s) appended.

	Return type

	DataSet

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
predict_proba(model, attrs=None, name='proba')

	Return a DataSet with prediction probability columns for the model.

	Parameters

	
	model (Union [https://docs.python.org/3/library/typing.html#typing.Union][GLM, RandomForestClassifier, GradientBoostedTreeClassifier]) – The model to predict outcomes with.

	attrs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – The attributes to use in the transformation, or
None if all the attributes should be used.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name or common prefix of the attribute(s) to be created.

	Returns

	The original dataset with the prediction probability column(s)
appended.

	Return type

	DataSet

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

Attribute class

	
class leapyear.dataset.Attribute(expr, relation, *, ordering=OrderSpec(osDirection=SortDirection.Asc, osNullOrdering=None), name=None)

	An attribute of a Dataset.

This exists for transformations to be performed on single attributes of
the dataset. For example, the attribute height might be measured in
meters however centimeters might be more appropriate, so an intermediate
Attribute can be extracted from the DataSet and manipulated.

All attribute manipulations are lazy; they are not evaluated until they are
needed to perform an analysis on the LeapYear server.

	
classmethod clear_cache()

	Clear the memo cache of attribute types.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property type

	Get the data type of this attribute.

	Return type

	AttributeType

	
property expression

	Get the Attribute’s expression.

	Return type

	Expression

	
property relation

	Get the relation this Attribute originates from.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Relation]

	
property ordering

	Get the ordering of this attribute.

	Return type

	OrderSpec

	
property name

	Get the name or alias of this attribute.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
alias(name)

	Associate an alias with an attribute.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to associate with an attribute.

	Return type

	Attribute

	
is_not()

	Return the boolean inverse of the attribute.

	Return type

	Attribute

	
sign()

	Return the sign of each element (1, 0 or -1).

	Return type

	Attribute

	
floor()

	Apply the floor transformation to the attribute.

Each attribute value is transformed to the largest integer less than
or equal to the attribute value.

	Return type

	Attribute

	
ceil()

	Apply the ceiling transformation to the attribute.

Each attribute value is transformed to the smallest integer greater than
or equal to the attribute value.

	Return type

	Attribute

	
exp()

	Apply exponent transformation to an attribute.

	Return type

	Attribute

	
expm1()

	Apply exponent transformation to an attribute and subtract one.

	Return type

	Attribute

	
sqrt()

	Apply square root transformation to an attribute.

	Return type

	Attribute

	
log()

	Apply natural logarithm transformation to an attribute.

	Return type

	Attribute

	
log1p()

	Apply natural logarithm transformation to an attribute and add 1.

	Return type

	Attribute

	
sigmoid()

	Apply sigmoid transformation to an attribute.

	Return type

	Attribute

	
replace(mapping)

	Replace specified values with the new values or attribute expressions.

Values matching the keys of the mapping and replaced by the
associated values. Values that do not match any of the keys are kept.

Keys and values may be python literals supported by
the LeapYear client, or other Attributes.

	Parameters

	mapping (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]], Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, Expression, float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]]]) – A mapping from values of this attribute’s type (T) to another
set of values and a different type (U). U may be a python literal
type (int, bool, datetime, …) or another Attribute.

	Returns

	The converted attribute.

	Return type

	Attribute

	
property microsecond

	Return the microseconds part of a temporal type.

	Return type

	Attribute

	
property second

	Return the seconds part of a temporal type.

	Return type

	Attribute

	
property minute

	Return the minutes part of a temporal type.

	Return type

	Attribute

	
property hour

	Return the hours part of a temporal type.

	Return type

	Attribute

	
property day

	Return the days part of a temporal type.

	Return type

	Attribute

	
property month

	Return the months part of a temporal type.

	Return type

	Attribute

	
property year

	Return the years part of a temporal type.

	Return type

	Attribute

	
greatest(attrs)

	Take the elementwise maximum.

Return NULL if and only if all attribute values are NULL.

	Return type

	Attribute

	
least(attrs)

	Take the elementwise minimum.

Return NULL if and only if all entries are NULL.

	Return type

	Attribute

	
coalesce(fallthrough, attrs=None)

	Convert all NULL values of an attribute to a value.

This function will extend the type of the attribute if necessary and
drop the nullable tag from the attribute data type.

	Parameters

	
	fallthrough (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – The value of the same type as this attribute that all NULL
values get converted into.

	attrs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Attribute]]) – The list of attributes to try before the fallthrough case.

	Returns

	The non-nullable attribute with extended type range (if necessary).

	Return type

	Attribute

Examples

1. Use coalesce to replace missing values with ‘1’ and create a new
attribute ‘col1_trn’:

>>> ds2 = ds1.with_attributes({'col1_trn':ds1['col1'].coalesce('1')})

	
isnull()

	Boolean check whether an attribute value is NULL.

Return a boolean attribute which resolves to True whenever the
underlying attribute value is NULL.

	Return type

	Attribute

	
notnull()

	Boolean inverse of isnull().

	Return type

	Attribute

	
decode(mapping)

	Map specified values to the new values or attribute expressions.

Values matching the keys of the mapping and replaced by the
associated values.

Values that do not match any of the keys are replaced by NULL.

Keys and values may be python literals supported by
the LeapYear client, or other Attributes.

If the combination of keys assure there should be no NULL values, the
client will not automatically convert the result of decode to
a non-nullable type. The user must use coalesce to remove NULL
from the domain of possible values.

	Parameters

	mapping (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – A mapping from values of this attribute’s type (T) to another
set of values and a different type (U). U may be a python literal
type (int, bool, datetime, …) or another Attribute.

	Returns

	The converted attribute.

	Return type

	Attribute

Examples

1. Create a new column ‘col1_trn’ that is based on values in ‘col1’.
If the value matches ‘pattern’ we assign the same string otherwise we assign
‘Other’ using the decode function:

>>> import leapyear.functions as f
>>> some_func = lambda x: (x != 'pattern').decode({True:'Other', False:'pattern'})
>>> ds2 = ds1.with_attributes({'col1_trn': some_func(f.col('col1'))})

2. Create a new column ‘col1_trn’ that is based on values in ‘col1’.
If the value == 0 then ‘col1_trn’ takes the value 0. Otherwise, it takes the
value of ‘col2’:

>>> import leapyear.functions as f
>>> some_func = lambda x: (x==0).decode({True:0,False:f.col('col2')})
>>> ds2 = ds1.with_attributes({'col1_trn': some_func(f.col('col1'))})

3. Create a new column ‘col1_trn’ that is based on values in ‘col1’ and ‘col2.
Based on an expression involving ‘col1’ and ‘col2’, ‘col1_trn’ takes the value ‘col1
or ‘col2’:

>>> import leapyear.functions as f
>>> def some_func(x,y):
 return ((x==0)&(y!=0)).decode({True:f.col('col1'),False:f.col('col2')})
>>> ds2 = ds1.with_attributes({'col1_trn': some_func(f.col('col1'),f.col('col2'))})

	
is_in(options)

	Boolean check whether an attribute value is in a list.

Return a boolean attribute which resolves to True whenever the
underlying attribute matches one of the list entries.

	Return type

	Attribute

	
text_to_bool()

	Convert the attribute to a boolean.

Strings that match (case insensitively) “1”, “y”, “yes”, “t”, or “true”
are converted to True;

Strings that match (case insensitively) “0”, “n”, “no”, “f”, or “false”
are converted to False. Other strings are treated as NULL.

	Return type

	Attribute

	
text_to_real(lb, ub)

	Convert a text attribute to a real-valued attribute.

	Parameters

	
	lb (float [https://docs.python.org/3/library/functions.html#float]) – The lower bound for the domain of possible values of the new
attribute. All values below this will be converted to NULL.

	ub (float [https://docs.python.org/3/library/functions.html#float]) – The upper bound for the domain of possible values of the new
attribute. All values below this will be converted to NULL.

	Return type

	Attribute

	
text_to_factor(distinct_vals_list)

	Convert a text attribute to a factor attribute.

	Parameters

	distinct_vals_list (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Input list of distinct values the input text column takes. Rows with values
that are not in this list will be filled with nulls.

	Return type

	Attribute

	
text_to_int(lb, ub)

	Convert a text attribute to an integer-valued attribute.

NOTE: integers close to MAX_INT64 or MIN_INT64 are not
represented precisely.

	Parameters

	
	lb (int [https://docs.python.org/3/library/functions.html#int]) – The lower bound for the domain of possible values of the new
attribute. All values below this will be converted to NULL.

	ub (int [https://docs.python.org/3/library/functions.html#int]) – The upper bound for the domain of possible values of the new
attribute. All values below this will be converted to NULL.

	Return type

	Attribute

	
as_real()

	Convert the attribute to a real.

	Return type

	Attribute

	
as_factor()

	Represent this attribute as a factor attribute.

Converts the attribute of type INT or BOOL to FACTOR.

Note: For more complex conversions, consider decode().

Examples

	Convert an attribute ‘col1’ in ds1 to factor:

>>> ds2 = ds1.with_attributes({'col1_fac':ds1['col1'].as_factor()})

	Return type

	Attribute

	
asc()

	Sort ascending.

Causes the attribute to be sorted in ascending order when the sorting
order is applied to the dataset.

Examples

	Order a dataset by multiple cols and drop duplicates:

>>> ds2 = ds1.order_by(ds1['col1'].asc(),ds1['col2'].asc(),ds1['col3'].asc())
>>> ds2 = ds2.drop_duplicates(['col2'])

	Return type

	Attribute

	
asc_nulls_first()

	Sort ascending, missing values first.

Causes the attribute to be sorted in ascending order when the sorting
order is applied to the dataset, with NULL values first.

	Return type

	Attribute

	
asc_nulls_last()

	Sort ascending, missing values last.

Causes the attribute to be sorted in ascending order when the sorting
order is applied to the dataset, with NULL values last.

	Return type

	Attribute

	
desc()

	Sort descending.

Causes the attribute to be sorted in descending order when the sorting
order is applied to the dataset.

	Return type

	Attribute

	
desc_nulls_first()

	Sort descending, missing values first.

Causes the attribute to be sorted in descending order when the sorting
order is applied to the dataset, with NULL values first.

	Return type

	Attribute

	
desc_nulls_last()

	Sort descending, missing values last.

Causes the attribute to be sorted in descending order when the sorting
order is applied to the dataset, with NULL values last.

	Return type

	Attribute

	
class leapyear.dataset.AttributeType(*args, **kwargs)

	The type of an Attribute.

An AttributeType is a read-only object returned by the server,
and should never be constructed directly.

	
property name

	Get the name of an AttributeType, e.g. INT.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property nullable

	Get the nullability of an AttributeType.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property domain

	Get the domain of an AttributeType.

The return type is dependent on the name of the type.
e.g. the domain of an INT AttributeType is a tuple
of the lower and upper bound, like (0, 10).

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

Aliases

	
leapyear.dataset.attribute.AttributeLike(*args, **kwargs)

	

Attribute-like objects are those that can be readily converted to an
attribute.

These include existing attributes, dates, strings, integers,
floats and expressions based on these objects.

Grouping and Windowing classes

	
class leapyear.dataset.GroupedData(grouping, rel)

	The result of a DataSet.group_by().

Run agg() to get a DataSet.

	
agg(*attr_aggs, max_count=None, **kwargs)

	Specify the aggregations to perform on the GroupedData.

	Parameters

	
	attr_aggs (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Aggregation]]) – A list of pairs. The second element of the pair is the aggregation
to perform; the first is a list of columns on which to perform it.
This is a list and not just a single attribute to support nullary
and binary aggregations.

Available aggregations:

	min

	max

	and

	or

	count_distinct

	approx_count_distinct

	count

	mean

	stddev

	stddev_samp

	stddev_pop

	variance

	var_samp

	var_pop

	skewness

	kurtosis

	sum

	sum_distinct

	covar_samp

	covar_pop

	corr

	max_count (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – If count aggregate is requested, this parameter will be used as
an upper bound in the schema of the derived aggregate count
attribute(s) of the grouped DataSet.
If not supplied, the upper bound would be inferred from the data
before returning the resulting DataSet object.

Note

When this parameter is set too high, differentially
private computations on the derived aggregate attribute would
include higher randomization effect. When it is set too low,
all counts higher than max_count will be replaced by
max_count.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – All keyword arguments are passed to the function
run when
the parameter max_count has to be inferred from the data. This
includes max_timeout_sec, which defaults to 300 seconds.

	Returns

	A DataSet object, containing aggregation results.

	Return type

	DataSet

Example

To compute correlation of height and weight as well as the count, run:

>>> gd.agg((['height','weight'], 'corr'), ([], 'count'))

	
class leapyear.dataset.Window

	Utility functions for defining WindowSpec.

Examples

>>> # ORDER BY date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
>>> window = Window.order_by("date").rows_between(
>>> Window.unbounded_preceding, Window.current_row,
>>>)

>>> # PARTITION BY country ORDER BY date ROWS BETWEEN 3 PRECEDING AND 3 FOLLOWING
>>> window = Window.order_by("date").partition_by("country").rows_between(-3, 3)

	
classmethod partition_by(*cols)

	Create a WindowSpec with the partitioning defined.

	Parameters

	cols (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, Expression, float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]]) – each attribute that should be used to partition windows.
If using an attribute name, user must use leapyear.functions.col
in order to reference the attribute.

	Return type

	WindowSpec

	
classmethod order_by(*cols)

	Create a WindowSpec with the ordering defined.

	Parameters

	cols (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, Expression, float [https://docs.python.org/3/library/functions.html#float], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], date [https://docs.python.org/3/library/datetime.html#datetime.date]]) – each attribute that should be used to order within a window.
If using an attribute name, user must use leapyear.functions.col
in order to reference the attribute.

	Return type

	WindowSpec

	
classmethod rows_between(start, end)

	Create a WindowSpec with the frame boundaries defined.

Create a WindowSpec with the frame boundaries defined,
from start (inclusive) to end (inclusive).
Both start and end are relative positions from the current row.
For example, “0” means “current row”, while “-1” means the row before
the current row, and “5” means the fifth row after the current row.
We recommend users use Window.unboundedPreceding, Window.unboundedFollowing,
and Window.currentRow to specify special boundary values, rather than using integral
values directly.

Note: windows of 1000 rows or more are not currently supported for expressions other than
lead and lag.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – boundary start, inclusive.
The frame is unbounded if this is Window.unboundedPreceding, or
any value less than or equal to -9223372036854775808.

	end (int [https://docs.python.org/3/library/functions.html#int]) – boundary end, inclusive.
The frame is unbounded if this is Window.unboundedFollowing, or
any value greater than or equal to 9223372036854775807.

	Return type

	WindowSpec

Module leapyear.functions

Functions for Attributes.

Datetime functions

Time functions for Attributes.

	
leapyear.functions.time.add_months(start_date, num_months)

	Return the date that is num_months after start_date.

NOTE: This function can take a datetime as input, but produces a date output regardless.

Examples

>>> str(dt)
'2004-02-29 23:59:59'
>>> add_months(dt, 1)
'2004-03-29'
>>> add_months(dt, 13)
'2005-03-01'

	Return type

	Attribute

	
leapyear.functions.time.date_add(start, days)

	Return the date that is days days after start.

NOTE: This function can take a datetime as input, but produces a date output regardless.

Examples

>>> str(dt)
'2004-02-28 23:59:59'
>>> date_add(dt, 1)
'2004-02-29'
>>> date_add(dt, 2)
'2004-03-01'

	Return type

	Attribute

	
leapyear.functions.time.date_sub(start, days)

	Return the date that is days days before start.

NOTE: This function can take a datetime as input, but produces a date output regardless.

Examples

>>> str(dt)
'2004-03-01 23:59:59'
>>> date_sub(dt, 1)
'2004-02-29'
>>> date_sub(dt, 2)
'2004-02-29'

	Return type

	Attribute

	
leapyear.functions.time.datediff(end, start)

	Return the number of days from start to end.

Examples

1. Create date diff column ‘date_sub’ that is a difference between
datetime column ‘col1’ and datetime column ‘col2’ in ds1:

>>> import leapyear.functions as f
>>> ds2 = ds1.with_attributes({'date_sub':f.time.datediff(f.col('col1'),f.col('col2'))})

	Return type

	Attribute

	
leapyear.functions.time.dayofmonth(e)

	Extract the day of the month as an integer from a given date/datetime attribute.

	Return type

	Attribute

	
leapyear.functions.time.dayofyear(e)

	Extract the day of the year as an integer from a given date/datetime attribute.

	Return type

	Attribute

	
leapyear.functions.time.hour(e)

	Extract the hours as an integer from a given date/datetime attribute.

	Return type

	Attribute

	
leapyear.functions.time.last_day(e)

	Return the last day of the month which the given date belongs to.

NOTE: This function can take a datetime as input, but produces a date output regardless.

Examples

>>> str(dt)
'2004-02-01 23:59:59'
>>> last_day(dt)
'2004-02-29'

	Return type

	Attribute

	
leapyear.functions.time.minute(e)

	Extract the minutes as an integer from a given date/datetime attribute.

	Return type

	Attribute

	
leapyear.functions.time.month(e)

	Extract the month as an integer from a given date/datetime attribute.

	Return type

	Attribute

	
leapyear.functions.time.months_between(date1, date2)

	Return integer number of months between dates date1 and date2.

This is based on both the day and the month, not the number of days between
the dates. Note in the last line of the examples that there is 1 month
between dateC and dateB even though there are only 29 days between
them. The result is negative if date1 is >=1 month before date2. The
number of months is always rounded down to the nearest integer.

Examples

>>> str(dateA)
'2004-01-01'
>>> str(dateB)
'2004-02-01'
>>> str(dateC)
'2004-03-02'
>>> months_between(dateA, dateB)
-1
>>> months_between(dateB, dateA)
1
>>> months_between(dateC, dateB)
1

	Return type

	Attribute

	
leapyear.functions.time.next_day(date, day_of_week)

	Return the next date that falls on the specified day of the week.

NOTE: This function can take a datetime as input, but produces a date output regardless.

Examples

>>> str(dt)
'2004-02-23 23:59:59'
>>> next_day(dt, "Sunday")
'2004-02-29'

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.time.quarter(e)

	Extract the quarter as an integer from a given date/datetime attribute.

	Return type

	Attribute

	
leapyear.functions.time.second(e)

	Extract the seconds as an integer from a given date/datetime attribute.

	Return type

	Attribute

	
leapyear.functions.time.to_date(e)

	Convert the column into Date type.

Examples

	Create truncated column ‘date_trunc’ from a datetime column ‘col1’ in ds1:

>>> import leapyear.functions as f
>>> ds2 = ds1.with_attributes({'date_trunc':f.time.to_date(f.col('col1'))})

	Return type

	Attribute

	
leapyear.functions.time.to_datetime(ts)

	Convert the column into Datetime type.

	Return type

	Attribute

	
leapyear.functions.time.trunc(date, fmt)

	Return date truncated to the unit specified by the format.

fmt can be one of: “year”, “month”, “day”

NOTE: This function can take a datetime as input, but produces a date output regardless.

Examples

>>> str(dt)
'2004-02-29 23:59:59'
>>> trunc(dt, "month")
'2004-02-01'

	Return type

	Attribute

	
leapyear.functions.time.weekofyear(e)

	Extract the week number as an integer from a given date/datetime attribute.

Week numbers range from 1 to (up to) 53, and new weeks start on Monday. Dates
at the begining / end of a year may be considered to be part of a week from
the previous / next year. Full documentation of week numbering can be found
here [https://en.wikipedia.org/wiki/ISO_week_date].

	Return type

	Attribute

	
leapyear.functions.time.year(e)

	Extract the year as an integer from a given date/datetime attribute.

	Return type

	Attribute

	
leapyear.functions.time.yearofweek(e)

	Extract the year based on the ISO week numbering where a week associated the previous year may spill over into the next calendar year.

Full documentation of week numbering can be found
here [https://en.wikipedia.org/wiki/ISO_week_date].

	Return type

	Attribute

	
leapyear.functions.time.year_with_week(e)

	Extract the year and the ISO week from a Date column and returns a Factor which combines the two.

For example, given a row containing ‘dt(2021,1,1)’ this function returns ‘2020-53’.

Full documentation with week numbering can be found
here [https://en.wikipedia.org/wiki/ISO_week_date].

	Return type

	Attribute

	
leapyear.functions.time.dayofweek(e)

	Extract the day of the week number as an integer from a given date/datetime attribute, where Monday = 1, …, Sunday = 7.

	Return type

	Attribute

	
leapyear.functions.time.parse_clamped_time(e, bounds, *, fmt=None)

	Parse a Text column and return a DateTime column using the given format clamped to bounds.

Format specification and default format depends on the back end:

	Spark

	default format: yyyy-MM-dd HH:mm:ss (Java reference [https://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html])

	Snowflake

	default format: yyyy-MM-DD HH:MI:SS (Snowflake reference [https://docs.snowflake.com/en/user-guide/date-time-input-output.html#about-the-format-specifiers-in-this-section])

Examples

>>> import datetime.datetime as dt
>>> parse_clamped_time(f.col("date"), bounds=(dt(2000, 1, 1), dt(2020, 12, 31)), fmt="yyyMMdd HHmmss")

	Return type

	Attribute

Math functions

Math functions for Attributes.

	
leapyear.functions.math.acos(e)

	Compute the cosine inverse of the given value.

The returned angle is in the range 0 through \(\pi\).

	Return type

	Attribute

	
leapyear.functions.math.asin(e)

	Compute the sine inverse of the given value.

The returned angle is in the range -pi/2 through pi/2.

	Return type

	Attribute

	
leapyear.functions.math.atan(e)

	Compute the tangent inverse of the given value.

	Return type

	Attribute

	
leapyear.functions.math.cbrt(e)

	Compute the cube-root of the given value.

	Return type

	Attribute

	
leapyear.functions.math.ceil(e)

	Compute the ceiling of the given value.

	Return type

	Attribute

	
leapyear.functions.math.cos(e)

	Compute the cosine of the given value.

	Return type

	Attribute

	
leapyear.functions.math.cosh(e)

	Compute the hyperbolic cosine of the given value.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.math.degrees(e)

	Convert an angle measured in radians to an equivalent angle measured in degrees.

	Return type

	Attribute

	
leapyear.functions.math.exp(e)

	Compute the exponential of the given value.

	Return type

	Attribute

	
leapyear.functions.math.expm1(e)

	Compute the exponential of the given value minus one.

	Return type

	Attribute

	
leapyear.functions.math.floor(e)

	Compute the floor of the given value.

	Return type

	Attribute

	
leapyear.functions.math.hypot(x, y)

	Compute sqrt(x^2 + y^2) without intermediate overflow or underflow.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.math.log(e)

	Compute the natural logarithm of the given value.

	Return type

	Attribute

	
leapyear.functions.math.log10(e)

	Compute the logarithm of the given value in base 10.

	Return type

	Attribute

	
leapyear.functions.math.log1p(e)

	Compute the natural logarithm of the given value plus one.

	Return type

	Attribute

	
leapyear.functions.math.log2(e)

	Compute the logarithm of the given column in base 2.

	Return type

	Attribute

	
leapyear.functions.math.sigmoid(e)

	Compute the sigmoid of the given value.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.math.pow(base, exp)

	Return the value of the first argument raised to the power of the second argument.

	Return type

	Attribute

	
leapyear.functions.math.radians(e)

	Convert an angle measured in degrees to an equivalent angle measured in radians.

	Return type

	Attribute

	
leapyear.functions.math.round(e, scale=0)

	Round the value of e to scale decimal places.

Examples

1. Create a new attribute ‘col1_trn’ which is derived by rounding ‘col1’
to 2 digits:

>>> import leapyear.functions as f
>>> ds2 = ds1.with_attributes({'col1_trn': f.math.round(f.col('col1'),2)})

	Return type

	Attribute

	
leapyear.functions.math.signum(e)

	Compute the signum of the given value.

	Return type

	Attribute

	
leapyear.functions.math.sin(e)

	Compute the sine of the given value.

	Return type

	Attribute

	
leapyear.functions.math.sinh(e)

	Compute the hyperbolic sine of the given value.

	Return type

	Attribute

	
leapyear.functions.math.sqrt(e)

	Compute the square root of the specified float value.

	Return type

	Attribute

	
leapyear.functions.math.tan(e)

	Compute the tangent of the given value.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.math.tanh(e)

	Compute the hyperbolic tangent of the given value.

	Return type

	Attribute

	
leapyear.functions.math.erf(e)

	Compute the error function on the given value.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.math.erfc(e)

	Compute the error function on the given value.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.math.inverf(e)

	Compute the error function on the given value.

	Return type

	Attribute

	
leapyear.functions.math.inverfc(e)

	Compute the error function on the given value.

	Return type

	Attribute

Non-aggregate functions

Non-aggregate functions for Attributes.

	
leapyear.functions.non_aggregate.all(*exprs)

	Return True if all columns are True.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.attr_in(input_attr_name, in_list)

	Expression for filtering rows based on attribute values that are IN a list of values.

	Parameters

	
	input_attr_name (String) – Name of Attribute based on which to filter

	in_list (Iterable) – List values for filtering

	Returns

	Boolean Attribute

	Return type

	Attribute

Examples

	Filtering based on an attribute taking a value from a list of values:

>>> import leapyear.functions as f
>>> ds2 = ds.where(f.attr_in('col1',in_list=[val1,val2,val3]))

	
leapyear.functions.non_aggregate.attr_not_in(input_attr_name, not_in_list)

	Expression for filtering rows based on attribute values that are IN a list of values.

	Parameters

	
	input_attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of Attribute based on which to filter

	not_in_list (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable]) – List values for filtering

	Returns

	Boolean Attribute

	Return type

	Attribute

Examples

	Filtering based on an attribute NOT taking a value from a list of values:

>>> import leapyear.functions as f
>>> ds2 = ds.where(f.attr_not_in('col1',not_in_list=[val1,val2,val3]))

	
leapyear.functions.non_aggregate.any(*exprs)

	Return True if any column is True.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.abs(e)

	Compute the absolute value.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.col(col_name)

	Return an Attribute based on the given name.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.column(col_name)

	Return an Attribute based on the given name.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.greatest(*exprs)

	Return the greatest value of the list of column names, skipping null values.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.isnull(e)

	Return true iff the column is null.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.least(*exprs)

	Return the greatest value of the list of column names, skipping null values.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.lit(literal)

	Create an Attribute of literal value.

	
leapyear.functions.non_aggregate.negate(e)

	Unary minus.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.not_(e)

	Inversion of boolean expression.

	Return type

	Attribute

	
leapyear.functions.non_aggregate.when(condition, value)

	Evaluate a list of conditions and returns one of multiple possible result expressions.

If otherwise is not defined at the end, null is returned for unmatched conditions.

Example

Encoding gender string column into an integer.

>>> df.select(when(col("gender") == "male", 0)
... .when(col("gender") == "female", 1)
... .otherwise(2))

	Return type

	Attribute

	
leapyear.functions.non_aggregate.to_text(e)

	Convert an attribute to a string representation.

	Return type

	Attribute

String functions

Math functions for Attributes.

	
leapyear.functions.string.ascii(e)

	Convert the first character of the string to its ASCII value.

	Return type

	Attribute

	
leapyear.functions.string.concat(*exprs, sep=None)

	Concatenation of strings with optional separator.

Concatenating factors {‘a’, ‘b’} and {‘c’, ‘d’} gives {‘ac’, ‘ad’, ‘bc’, ‘cd’}.
Including the separator ” ” gives {‘a c’, ‘a d’, ‘b c’, ‘c d’}.

If any of the expressions are type TEXT, then the result will be TEXT.

Examples

1. Create new column ‘col1_trn’ which concatenation of ‘col1’ and ‘col2’ with
separator ‘-‘. It can be used to contruct a date column from day and month
columns:

>>> import leapyear.functions as f
>>> ds2 = ds1.with_attributes({'col1_trn':f.concat(ds1['col1'],ds1['col2'],sep='-')})

	Return type

	Attribute

	
leapyear.functions.string.instr(attr, substr)

	Give the position of substring in the Attribute, otherwise 0.

	Return type

	Attribute

	
leapyear.functions.string.length(attr)

	Return the length of the string.

	Return type

	Attribute

	
leapyear.functions.string.levenshtein(attr1, attr2)

	Compute the Levenshtein distance between strings.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.locate(attr, substr, pos=None)

	Give the position of substr in the Attribute, optionally after pos.

Position is returned as a positive integer starting at 1 if the substring is
found, and 0 if the substring is not found.

	
leapyear.functions.string.lpad(attr, len_, pad)

	Pad the string on the left with pad to make the total length len_.

When pad is an empty string, the string is returned without modification, or truncated to
len_.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.ltrim(attr)

	Remove whitespace characters on the beginning of the string.

	Return type

	Attribute

	
leapyear.functions.string.reverse(attr)

	Reverse the string.

	Return type

	Attribute

	
leapyear.functions.string.repeat(attr, n)

	Repeat the string n times.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.rpad(attr, len_, pad)

	Pad the string on the right with pad to make the total length len_.

When pad is an empty string, the string is returned without modification, or truncated to
len_.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.rtrim(attr)

	Remove whitespace characters at the end of the string.

	Return type

	Attribute

	
leapyear.functions.string.soundex(attr)

	Return the soundex code for the specified expression.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.substring(attr, start, len_)

	Return the substring of length len_ starting at start.

	Return type

	Attribute

	
leapyear.functions.string.substring_index(attr, delim, len_)

	Return the substring from string str before count occurrences of the delimiter delim.

If count is positive, everything the left of the final delimiter (counting from left) is
returned. If count is negative, every to the right of the final delimiter (counting from the
right) is returned. substring_index performs a case-sensitive match when searching for delim.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.translate(attr, match, replace)

	Translate any character in the src by a character in replace.

The characters in replace correspond to the characters in matching. The translate
will happen when any character in the string matches the character in the match.

	Return type

	Attribute

	
leapyear.functions.string.trim(attr)

	Remove the whitespace from the beginning and end of the string.

	Return type

	Attribute

	
leapyear.functions.string.lex_lt(attr1, attr2)

	Lexicographical less-than operation.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.lex_lte(attr1, attr2)

	Lexicographical less-than-or-equal operation.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.lex_gt(attr1, attr2)

	Lexicographical greater-than operation.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.lex_gte(attr1, attr2)

	Lexicographical greater-than-or-equal operation.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.remove_accents(attr)

	Remove all accents from the string.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Attribute

	
leapyear.functions.string.lower(attr)

	Convert strings to lowercase.

	Return type

	Attribute

	
leapyear.functions.string.upper(attr)

	Convert strings to uppercase.

	Return type

	Attribute

	
leapyear.functions.string.regex_extract(attr, pattern, group_idx)

	Use a regular expression pattern to extract a part of the string.

This function always results in a nullable Text type.

The regex syntax depends on the backend:

	Spark

	https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

	Snowflake

	https://docs.snowflake.com/en/sql-reference/functions-regexp.html#general-usage-notes

	Return type

	Attribute

	
leapyear.functions.string.regex_replace(attr, pattern, replace)

	Use a regular expression pattern to replace a part of the string.

This function always results in a nullable Text type.

The regex syntax depends on the backend:

	Spark

	https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

	Snowflake

	https://docs.snowflake.com/en/sql-reference/functions-regexp.html#general-usage-notes

	Return type

	Attribute

Windowing functions

Window functions for Attributes.

	
leapyear.functions.window.lead(e, i)

	Compute the lead value.

	Return type

	WindowAttribute

	
leapyear.functions.window.lag(e, i)

	Compute the lag value.

	Return type

	WindowAttribute

	
leapyear.functions.window.first(e)

	Compute the first non-null value.

	Return type

	WindowAttribute

	
leapyear.functions.window.last(e)

	Compute the last non-null value.

	Return type

	WindowAttribute

	
leapyear.functions.window.count(e=None)

	Compute the number of non-null entries.

	Return type

	WindowAttribute

	
leapyear.functions.window.approx_count_distinct(attrs)

	Compute the number of distinct entries (using an approximate streaming algorithm).

	Return type

	WindowAttribute

	
leapyear.functions.window.mean(e)

	Compute the mean value.

Examples

1. Create a window specification that partitions based on ‘col1’
and orders by a ‘date_col’ and picks past 14 rows from current row 0.
Then, we can compute mean of ‘col2’ over this window:

>>> import leapyear.functions as f
>>> from leapyear.dataset import Window
>>> ws1 = Window.partition_by(f.col('col1'))
 .order_by(f.col('date_col').asc())
 .rows_between(start=-14,end=0)
>>> ds2 = ds1.project(['date_col','col1','col2'])
 .with_attribute('mean_col2', f.window.mean(f.col('col2')).over(ws1))

	Return type

	WindowAttribute

	
leapyear.functions.window.avg(e)

	Compute the mean value.

Examples

1. Create a window specification that partitions based on ‘col1’
and orders by a ‘date_col’ and picks past 14 rows from current row 0.
Then, we can compute mean of ‘col2’ over this window:

>>> import leapyear.functions as f
>>> from leapyear.dataset import Window
>>> ws1 = Window.partition_by(f.col('col1'))
 .order_by(f.col('date_col').asc())
 .rows_between(start=-14,end=0)
>>> ds2 = ds1.project(['date_col','col1','col2'])
 .with_attribute('mean_col2', f.window.mean(f.col('col2')).over(ws1))

	Return type

	WindowAttribute

	
leapyear.functions.window.sum(e)

	Compute the sum.

	Return type

	WindowAttribute

	
leapyear.functions.window.or_(e)

	Compute the or of boolean values.

	Return type

	WindowAttribute

	
leapyear.functions.window.and_(e)

	Compute the and of boolean values.

	Return type

	WindowAttribute

	
leapyear.functions.window.min(e)

	Compute the min value.

	Return type

	WindowAttribute

	
leapyear.functions.window.max(e)

	Compute the max value.

	Return type

	WindowAttribute

	
leapyear.functions.window.stddev(e)

	Compute the sample standard deviation.

	Return type

	WindowAttribute

	
leapyear.functions.window.stddev_samp(e)

	Compute the sample standard deviation.

	Return type

	WindowAttribute

	
leapyear.functions.window.stddev_pop(e)

	Compute the population standard deviation.

	Return type

	WindowAttribute

	
leapyear.functions.window.variance(e)

	Compute the sample variance.

	Return type

	WindowAttribute

	
leapyear.functions.window.variance_samp(e)

	Compute the sample variance.

	Return type

	WindowAttribute

	
leapyear.functions.window.variance_pop(e)

	Compute the population variance.

	Return type

	WindowAttribute

	
leapyear.functions.window.skewness(e)

	Compute the skewness.

	Return type

	WindowAttribute

	
leapyear.functions.window.kurtosis(e)

	Compute the kurtosis.

	Return type

	WindowAttribute

	
leapyear.functions.window.covar_samp(e1, e2)

	Compute the sample covariance.

	Return type

	WindowAttribute

	
leapyear.functions.window.covar_pop(e1, e2)

	Compute the population covariance.

	Return type

	WindowAttribute

	
leapyear.functions.window.corr(e1, e2)

	Compute the correlation.

	Return type

	WindowAttribute

Module leapyear.feature

Feature engineering classes.

OneHotEncoder class

	
class leapyear.feature.OneHotEncoder(input_cols, max_size=32, drop_originals=True, drop_last=True)

	One-hot encode attributes.

FACTOR and INT columns that can have less than max_size values are converted to BOOL
columns indicating the presence of the value. Will only work with non-nullable
columns. Nullable columns can be converted to non-nullable with
leapyear.dataset.Attribute.coalesce().

The last category is not included by default, where the categories are sorted
lexicographically based on their characters’ ASCII values.

Examples

	Using OneHotEncoder on two columns ‘col1’ and ‘col2’ in Dataset ‘ds1’:

>>> ohe = OneHotEncoder(['col1', 'col2'], drop_originals=True, max_size=64)
>>> ds2 = ohe.transform(ds1)

	Parameters

	
	input_cols (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the names of the input columns.

	max_size (int [https://docs.python.org/3/library/functions.html#int]) – maximum number of values to one hot encode per column. (default: 32)

	drop_originals (bool [https://docs.python.org/3/library/functions.html#bool]) – drop columns not derived from the input columns. (default: True)

	drop_last (bool [https://docs.python.org/3/library/functions.html#bool]) – drop the last column containing redundant information. (default: True)

BoundsScaler class

	
class leapyear.feature.BoundsScaler(input_cols, lower=0.0, upper=1.0)

	Scale the attributes by the bounds of the type.

BOOL, INT and REAL columns are scaled so all values fall between min and max (inclusive). In
contrast to MinMaxScaler and StandardScaler, there is no privacy leakage using this class.

Examples

	Using BoundsScaler on two columns ‘col1’ and ‘col2’ in Dataset ‘ds1’:

>>> bs = BoundsScaler(['col1','col2'])
>>> ds2 = bs.fit_transform(ds1)

	Parameters

	
	input_cols (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the names of the input columns.

	lower (float [https://docs.python.org/3/library/functions.html#float]) – attributes are scaled to this lower bound (default 0.)

	upper (float [https://docs.python.org/3/library/functions.html#float]) – attributes are scaled to this upper bound (default 1.)

BoundsAbsScaler class

	
class leapyear.feature.BoundsAbsScaler(input_cols)

	Scale the attributes by the max absolute value of the type bounds.

INT and REAL columns are scaled so all values fall between -1 and 1, with no shifting of the
data.

Examples

	Using BoundsAbsScaler on two columns ‘col1’ and ‘col2’ in Dataset ‘ds1’:

>>> bs = BoundsAbsScaler(['col1','col2'])
>>> ds2 = bs.fit_transform(ds1)

	Parameters

	input_cols (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the names of the input columns.

MinMaxScaler class

	
class leapyear.feature.MinMaxScaler(input_cols, min_=0.0, max_=1.0)

	Scale the attributes by the min and max of the attribute.

BOOL, INT and REAL columns are scaled so all values fall between min and max (inclusive).

Examples

	Using MinMaxScaler on two columns ‘col1’ and ‘col2’ in Dataset ‘ds1’:

>>> ms = MinMaxScaler(['col1','col2'], min_=0.0, max_=1.0)
>>> ds2 = ms.fit_transform(ds1)

	Parameters

	
	input_cols (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the names of the input columns.

	min (float [https://docs.python.org/3/library/functions.html#float]) – attributes are scaled to this lower bound (default 0.)

	max (float [https://docs.python.org/3/library/functions.html#float]) – attributes are scaled to this lower bound (default 1.)

MaxAbsScaler class

	
class leapyear.feature.MaxAbsScaler(input_cols)

	Scale the attributes by the max absolute value of the min and the max.

INT and REAL columns are scaled so that values smaller than the absolute value of the min
or max fall between -1 and 1, with no shifting of the data.

Examples

	Using BoundsAbsScaler on two columns ‘col1’ and ‘col2’ in Dataset ‘ds1’:

>>> bs = BoundsAbsScaler(['col1','col2'])
>>> ds2 = bs.fit_transform(ds1)

	Parameters

	input_cols (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the names of the input columns.

StandardScaler class

	
class leapyear.feature.StandardScaler(input_cols, with_mean=True, with_stdev=True)

	Scale the attributes to be centered at zero with unit variance.

INT and REAL columns are scaled with removed mean and scaled to unit variance.

Examples

	Using StandardScaler on columns ‘col1’ and ‘col2’ in Dataset ‘ds1’:

>>> ss = StandardScaler(['col1','col2'], with_mean=True, with_stdev=False)
>>> ds2 = ss.fit_transform(ds1)

	Parameters

	
	input_cols (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the names of the input columns.

	with_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove the mean from the attributes.

	with_stdev (bool [https://docs.python.org/3/library/functions.html#bool]) – Scale the attribute to have unit standard deviation.

ScaleTransformModel class

	
class leapyear.feature.ScaleTransformModel(attr_lower_upper, lower, upper, scale_bool)

	Scale attributes to new values.

Shift and scale each attribute so the 2 values associated with each attribute are mapped to the
2 values in new_values.

Normalizer class

	
class leapyear.feature.Normalizer(input_cols, p, suffix=<factory>)

	Compute the p-norm of attributes and normalize by norm value.

Will only work on INT and REAL columns.

Examples

	Using Normalizer on columns ‘col1’ and ‘col2’ in Dataset ‘ds1’:

>>> norm_trn = Normalizer(['col1','col2'], p = 2)
>>> ds2 = norm_trn.fit_transform(ds1)

	Parameters

	
	input_cols (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The list of the input columns that needs to normalized.

	p (int [https://docs.python.org/3/library/functions.html#int]) – norm p

	suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Suffix appended to the name of the transformed attribute. Defaults to ‘_NORM’ for Snowflake and ‘_norm’ for Spark

	
fit_transform(dataset, **kwargs)

	Normalize a set of attributes.

Computes p norm.

	Return type

	DataSet

Winsorizer class

	
class leapyear.feature.Winsorizer(input_col, lo_val, hi_val, suffix=<factory>)

	Bound the non-null values of the attribute to be within lo_val and hi_val.

Will only work on non-nullable INT and REAL columns. Nullable columns can be
converted to non-nullable with leapyear.dataset.Attribute.coalesce().

When transformed, returns the DataSet with an additional attribute that is winsorised between
the given low and high value for the specified attribute.

Examples

	Using Winsorizer on column ‘col1’ in Dataset ‘ds1’:

>>> wins = Winsorizer('col1', lo_val = 0, hi_val = 1)
>>> ds2 = wins.fit_transform(ds1)

	Parameters

	
	input_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the input columns.

	lo_val (float [https://docs.python.org/3/library/functions.html#float]) – After transformation attribute will be greater than or equal to lo_val

	hi_val (float [https://docs.python.org/3/library/functions.html#float]) – After transformation attribute will be lesser than or equal to hi_val

	suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Suffix appended to the name of the transformed attribute. Defaults to ‘_WIN’ for Snowflake and ‘_win’ for Spark

	
fit_transform(dataset, **kwargs)

	Winsorize the specified attribute.

Called after providing lo and hi vals.

	Return type

	DataSet

Bucketizer class

	
class leapyear.feature.Bucketizer(input_col, split_vals)

	Quantize the attribute according to thresholds specified in split_vals.

attr < split_vals[0] -> bin 0
attr >= split_vals[0] and attr < split_vals[1] -> bin 1
...
attr >= split_vals[-1] -> bin len(split_vals)

Works with INT and REAL columns.

Examples

	Using Bucketizer on column ‘col1’ in Dataset ‘ds1’:

>>> split_vals = [0, 0.25, 0.75]
>>> buck = Bucketizer('col1', split_vals = split_vals)
>>> ds2 = buck.fit_transform(ds1)

	Parameters

	
	input_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – the names of the input column.

	split_vals (Sequence[float [https://docs.python.org/3/library/functions.html#float]]) – Thresholds for creating the bins

	
fit_transform(dataset, **kwargs)

	For testing use only.

	Return type

	DataSet

Module leapyear.analytics

Statistics and machine learning algorithms.

LeapYear analyses are functions that are executed by the server to compute
statistics or to perform machine learning tasks on DataSets. These
functions return an Analysis type, which is executed on the server by calling
the run() method.

For simple statistics, such as count() or mean(), the values can be extracted
using the following pattern:

>>> from leapyear import Client, DataSet
>>> from leapyear.analytics import count_rows, mean
>>> client = Client(url='http://ly-server:4401', username='admin', password='password')
>>> dataset = DataSet.from_table('db.table')
>>> dataset_rows_analysis = count_rows(dataset)
>>> n_rows = dataset_rows_analysis.run()
>>> print(n_rows)
10473
>>> dataset_mean_x_analysis = mean('x0', dataset)
>>> mean_x = dataset_mean_x_analysis.run()
>>> print(mean_x)
5.234212346345

The computation of all univariate statistics follows the pattern for mean(). For
more complicated machine learning tasks, multiple columns must be specified, depending on the
task.

Unsupervised learning tasks (like clustering) will generally require the specification
of which features in the DataSet to use. Supervised learning tasks (like regression)
will additionally require the specification of a target variable.

For example, we can train a linear regression model as follows:

>>> from leapyear.analytics import generalized_linreg
>>> regression = generalized_linreg(['x0', 'x1'], 'y', dataset, affine=True, l2reg=1.0)
>>> model = regression.run()

Helper routines are available for performing cross-validation
(see cross_val_score_linreg()). Note that, unlike other analyses,
they are immediately executed (without calling run()):

>>> from leapyear.analytics import cross_val_score_linreg
>>> cross_val_score = cross_val_score_linreg(
>>> ['x0', 'x1'], 'y', dataset, cv=3,
>>> affine=True, l1reg=0.1, l2reg=1.0, scorer='mse'
>>>)

Data Analysis

	
leapyear.analytics.count(attr, dataset=None, drop_nulls=False, target_relative_error=None, max_budget=None)

	Analysis: Count the elements of an attribute.

This analysis can be executed using the
run method to compute
the approximate count of elements, including NULL values.

The user can request additional information about the computation with
run(rich_result=True).
In this case, an object of
RandomizationInterval,
will be generated likely including the precise value of the computation on the data sample.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the count of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to ignore NULL values. Default: False.

	target_relative_error (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – A float value between 0 and 1 indicating the level of relative error that
should be targeted for this computation. If specified, the system will attempt
to ensure that the absolute value of the relative error between the randomized
result and the true count is roughly target_relative_error. If this is not
possible due to budget constraints set by the admin, the system will return a
randomized result with the smallest randomization effect allowed.
If not specified, a default value specified by the admin is used.
This can only be used if the admin has turned on the adaptive count feature.

	max_budget (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – The maximum amount of budget that the system should spend while trying to achieve
target_relative_error. If specified, the absolute amount of budget spent will
not exceed max_budget. If the user specifies a value greater than
the maximum budget for the computation set by the admin, system will use the
admin-set maximum. If the system can achieve target_relative_error while
spending less than max_budget, it will do so.

	Returns

	Analysis object that can be executed using the
run method.

	Return type

	CountAnalysisWithRI

	
leapyear.analytics.count_rows(dataset, target_relative_error=None, max_budget=None)

	Analysis: Count the number of rows in a dataset.

This analysis can be executed using the
run method to compute
the approximate number of rows in the dataset.

The user can request additional information about the computation with
run(rich_result=True).
In this case, an object of
RandomizationInterval will
be generated, likely including the precise value of the computation on the data sample.

	Parameters

	
	dataset (DataSet) – The input dataset.

	target_relative_error (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – A float value between 0 and 1 indicating the level of relative error that
should be targeted for this computation. If specified, the system will attempt
to ensure that the absolute value of the relative error between the randomized
result and the true count is roughly target_relative_error. If this is not
possible due to budget constraints set by the admin, the system will return a
randomized result with the smallest randomization effect allowed.
If not specified, a default value specified by the admin is used.
This can only be used if the admin has turned on the adaptive count feature.

	max_budget (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – The maximum amount of budget that the system should spend while trying to achieve
target_relative_error. If specified, the absolute amount of budget spent will
not exceed max_budget. If the user specifies a value greater than
the maximum budget for the computation set by the admin, system will use the
admin-set maximum. If the system can achieve target_relative_error while
spending less than max_budget, it will do so.

	Returns

	Analysis object that can be executed using the
run method.

	Return type

	CountAnalysisWithRI

	
leapyear.analytics.count_distinct(attr, dataset=None, drop_nulls=False, target_relative_error=None, max_budget=None)

	Analysis: Count the unique elements of an attribute.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – The attribute or attributes to compute the distinct count of. Either a
standalone attribute or the name of an attribute from a dataset
provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove any records with null. Unique values associated with records containing
nulls are not included in the count.

	target_relative_error (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – A float value between 0 and 1 indicating the level of relative error that
should be targeted for this computation. If specified, the system will attempt
to ensure that the absolute value of the relative error between the randomized
result and the true count is roughly target_relative_error. If this is not
possible due to budget constraints set by the admin, the system will return a
randomized result with the smallest randomization effect allowed.
If not specified, a default value specified by the admin is used.
This can only be used if the admin has turned on the adaptive count feature.

	max_budget (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – The maximum amount of budget that the system should spend while trying to achieve
target_relative_error. If specified, the absolute amount of budget spent will
not exceed max_budget. If the user specifies a value greater than
the maximum budget for the computation set by the admin, system will use the
admin-set maximum. If the system can achieve target_relative_error while
spending less than max_budget, it will do so.

	Returns

	Prepared analysis of the count.

	Return type

	Analysis

	
leapyear.analytics.count_distinct_rows(dataset, target_relative_error=None, max_budget=None)

	Analysis: Count the number of distinct rows in a dataset.

	Parameters

	
	dataset (DataSet) – The input dataset.

	target_relative_error (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – A float value between 0 and 1 indicating the level of relative error that
should be targeted for this computation. If specified, the system will attempt
to ensure that the absolute value of the relative error between the randomized
result and the true count is roughly target_relative_error. If this is not
possible due to budget constraints set by the admin, the system will return a
randomized result with the smallest randomization effect allowed.
If not specified, a default value specified by the admin is used.
This can only be used if the admin has turned on the adaptive count feature.

	max_budget (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – The maximum amount of budget that the system should spend while trying to achieve
target_relative_error. If specified, the absolute amount of budget spent will
not exceed max_budget. If the user specifies a value greater than
the maximum budget for the computation set by the admin, system will use the
admin-set maximum. If the system can achieve target_relative_error while
spending less than max_budget, it will do so.

	Returns

	Analysis for counting the number of distinct rows.

	Return type

	ScalarAnalysis

	
leapyear.analytics.mean(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the mean of an attribute.

This analysis can be executed using the
run method to compute
the approximate mean of the attribute.

The user can request additional information about the computation with
run(rich_result=True).
In this case, the
RandomizationInterval object will
be generated, likely including the precise value of the computation on the data sample.

Note: If the attribute is nullable, setting drop_nulls=True is
necessary for the computation to go through.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the mean of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring NULL
values.

	Returns

	Analysis object that can be executed using the
run method.

	Return type

	ScalarAnalysisWithCI

	
leapyear.analytics.sum(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the sum of a numeric attribute.

This analysis can be executed using the
run method to compute
the approximate mean of the attribute.

The user can request additional information about the computation with
run(rich_result=True).
In this case, the
RandomizationInterval object will
be generated,
likely including the precise value of the computation on the data sample.

Note: If the attribute is nullable, setting drop_nulls=True is
necessary for the computation to go through.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the sum of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring NULL
values.

	Returns

	Analysis object that can be executed using the
run method.

	Return type

	ScalarAnalysisWithRI

	
leapyear.analytics.variance(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the variance of an attribute.

This analysis can be executed using the
run method to compute
the approximate mean of the attribute.

The user can request additional information about the computation with
run(rich_result=True).
In this case, the
RandomizationInterval object will
be generated,
likely including the precise value of the computation on the data sample.

Note: If the attribute is nullable, setting drop_nulls=True is
necessary for the computation to go through.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the variance of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring NULL
values.

	Returns

	Analysis object that can be executed using the
run method.

	Return type

	ScalarAnalysisWithCI

	
leapyear.analytics.min(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the minimum value of an attribute.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the min of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring nulls.

	Returns

	Prepared analysis of the min.

	Return type

	ScalarAnalysis

Note

The minimum reported is the 1/1000 quantile of the attribute.

When the attribute being analyzed has a very narrow range of possible values,
the minimum returned may be inaccurate. As an extreme example, if the width
of the interval of possible values of an attribute is less than 0.01,
the minimum returned will be a fixed number that does not depend on
the data distribution. For such cases, scale the attribute by 10/width,
compute the minimum, and rescale the returned value by width/10.

The result of this analysis may be very different from the true minimum of
the data sample in the following two scenarios:

1. When the underlying attribute distribution has significant outliers (e.g.
a very long tail) - this is because the minimum computed is the 1/1000
quantile of the attribute, and

2. When the public lower bound is very different from the true minimum of
the data sample - this is because differential privacy is aiming to minimize
the effect of individual records on the output.

	
leapyear.analytics.max(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the maximum value of an attribute.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the max of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring nulls.

	Returns

	Prepared analysis of the max.

	Return type

	Analysis

Note

The maximum reported is the 999/1000 quantile of the attribute.

When the attribute being analyzed has a very narrow range of possible values,
the maximum returned may be inaccurate. As an extreme example, if the width
of the interval of possible values of an attribute is less than 0.01,
the maximum returned will be a fixed number that does not depend on
the data distribution. For such cases, scale the attribute by 10/width,
compute the maximum, and rescale the returned value by width/10.

The result of this analysis may be very different from the true maximum of
the data sample in the following two scenarios:

1. When the underlying attribute distribution has significant outliers (e.g.
a very long tail) - this is because the maximum computed is the 999/1000
quantile of the attribute, and

2. When the public upper bound is very different from the true maximum of
the data sample - this is because differential privacy is aiming to minimize
the effect of individual records on the output.

	
leapyear.analytics.median(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the median value of an attribute.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the median of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring nulls.

	Returns

	Prepared analysis of the median.

	Return type

	Analysis

Note

When the attribute being analyzed has a very narrow range of possible values,
the median returned may be inaccurate. As an extreme example, if the width
of the interval of possible values of an attribute is less than 0.01,
the median returned will be a fixed number that does not depend on
the data distribution. For such cases, scale the attribute by 10/width,
compute the median, and rescale the returned value by width/10.

	
leapyear.analytics.quantile(q, attr, dataset=None, drop_nulls=False)

	Analysis: Compute a certain quantile q of an attribute.

	Parameters

	
	q (float [https://docs.python.org/3/library/functions.html#float]) – Quantile to compute, which must be between 0 and 1 inclusive.

	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the quantile of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring nulls.

	Returns

	Prepared analysis of the quantile.

	Return type

	Analysis

Note

When the attribute being analyzed has a very narrow range of possible values,
the quantile returned may be inaccurate. As an extreme example, if the width
of the interval of possible values of an attribute is less than 0.01,
the quantile returned will be a fixed number that does not depend on
the data distribution. For such cases, scale the attribute by 10/width,
compute the quantile, and rescale the returned value by width/10.

	
leapyear.analytics.skewness(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the skewness of an attribute.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the skewness of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring nulls.

	Returns

	Prepared analysis of the skewness.

	Return type

	Analysis

	
leapyear.analytics.kurtosis(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the excess kurtosis of an attribute.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the kurtosis of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring nulls.

	Returns

	Prepared analysis of the kurtosis.

	Return type

	Analysis

	
leapyear.analytics.iqr(attr, dataset=None, drop_nulls=False)

	Analysis: Compute the interquartile range of an attribute.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the interquartile range of. Either a standalone attribute
or the name of an attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string. When attr is an Attribute
this field is ignored.

	drop_nulls (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow running on a nullable column, ignoring nulls.

	Returns

	Prepared analysis of the iqr.

	Return type

	Analysis

	
leapyear.analytics.histogram(attr, dataset=None, bins=10, interval=None)

	Analysis: Compute the histogram of the attribute in the dataset.

	Parameters

	
	attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to compute the histogram of. Either a standalone
attribute or the name of an attribute from a dataset provided
by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when attr is a string.

	bins (int [https://docs.python.org/3/library/functions.html#int]) – Number of bins between the bounds. (default=10)

	interval (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The lower and upper bound of the histogram. Defaults to attribute
bounds if None.

	Returns

	Prepared analysis of the histogram.

	Return type

	Analysis

	
leapyear.analytics.histogram2d(x_attr, y_attr, dataset=None, x_bins=10, y_bins=10, x_range=None, y_range=None)

	Analysis: Compute the 2D histogram of two attributes in the dataset.

	Parameters

	
	x_attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to use to compute the first dimension of the
histogram. Either a standalone attribute or the name of an
attribute from a dataset provided by dataset.

	y_attr (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute to use to compute the first dimension of the
histogram. Either a standalone attribute or the name of an
attribute from a dataset provided by dataset.

	dataset (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSet]) – The dataset to use when x_attr or y_attr are strings.

	x_bins (int [https://docs.python.org/3/library/functions.html#int]) – Number of bins between the bounds in the first attribute.

	y_bins (int [https://docs.python.org/3/library/functions.html#int]) – Number of bins between the bounds in the second attribute.

	x_range (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The lower and upper bound of the first attribute for the histogram.

	y_range (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]) – The lower and upper bound of the second attribute for the
histogram.

	Returns

	Prepared analysis of the histogram.

	Return type

	Analysis

	
leapyear.analytics.correlation_matrix(xs, dataset, *, center=True, scale=True, **kwargs)

	Analysis: Compute the correlation matrix of the set of attributes.

NOTE: This analysis does not require run().

	Parameters

	
	xs (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of attribute names to compute correlation matrix for.

	dataset (DataSet) – The DataSet containing these attributes.

	center (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to center the columns before computing correlation matrix.
If False, proceed assuming the columns are already centered.

	scale (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to divide covariance matrix by number of rows.
If False, do not divide.

	max_timeout_sec – Specifies the maximum amount of time (in seconds) the user is willing to wait for a
response. If set to None, this function will poll the server indefinitely.
If it is run with scale or center set to True, the timeout will be multiplied.
Defaults to waiting forever.

	Returns

	The correlation matrix.

	Return type

	np.ndarray

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.covariance_matrix(xs, dataset, *, center=True, scale=True, **kwargs)

	Analysis: Compute the covariance matrix of the set of attributes.

NOTE: This analysis does not require run().

	Parameters

	
	xs (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of attribute names that are the features.

	dataset (DataSet) – The DataSet of the attributes.

	center (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to center the columns before compute the covariance matrix. If False, assume the
columns are centered.

	scale (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to divide the matrix by number of rows. If False, do not divide.

	max_timeout_sec – Specifies the maximum amount of time (in seconds) the user is willing to wait for a
response. If set to None, this function will poll the server indefinitely.
If it is run with scale or center set to True, the timeout will be multiplied.
Defaults to waiting forever.

	Returns

	The covariance matrix.

	Return type

	np.ndarray

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.describe(dataset, attributes=None)

	Describe the columns of the dataset for use in data exploration.

The describe function provides a way for an analyst to perform initial rough data exploration
on a dataset. To get more accurate statistics, the individual functions mean(),
count(), et cetera, are recommended. This function does not use the analysis cache of the
other statistics functions.

Numeric columns are described by their count, mean, standard deviation,
minimum, maximum and the quartiles. Categorical columns (factors and
booleans) are described by their count, distinct count and frequency of
the most frequent element.

	Parameters

	
	dataset (DataSet) – The DataSet to be described

	attributes (Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], Attribute, str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – The attributes to describe. If a value is not provided, or None, describe all
attributes.

	Returns

	Prepared analysis for describing the dataset. Execute the analysis using the
run() method.

	Return type

	DescribeAnalysis

	
leapyear.analytics.groupby_agg_view(dataset, attrs, agg_attr=None, agg_type=<GroupByAggType.COUNT: 1>, *, max_groupby_agg_keys=100000000, size_threshold=None, agg_attr_and_type=None)

	Compute aggregate statistic within each group and output aggregate results.

Only groups with estimated size larger than minimum_dataset_size will be returned.
This parameter can be set in run.

	Parameters

	
	dataset (DataSet) – The DataSet to perform groupby and aggregation on

	attrs (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – List of attributes to perform groupby.

	agg_attr (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Compute aggregate statistics on this column within each group

	agg_type (Union [https://docs.python.org/3/library/typing.html#typing.Union][GroupByAggType, str [https://docs.python.org/3/library/stdtypes.html#str]]) – Aggregate type. ‘count’, ‘mean’ or ‘sum’.

	max_groupby_agg_keys (int [https://docs.python.org/3/library/functions.html#int]) – This value prevents submitting computations that have a very large number of groupby
keys. By default, it raises GroupbyAggTooManyKeysError if the number of groups exceeds
100000000.

	size_threshold (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Deprecated: see minimum_dataset_size in the
run method.

	agg_attr_and_type (Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][GroupByAggType, str [https://docs.python.org/3/library/stdtypes.html#str]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][GroupByAggType, str [https://docs.python.org/3/library/stdtypes.html#str]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]]], None [https://docs.python.org/3/library/constants.html#None]]) – List of tuples (agg_type, agg_attr). Compute aggregate statistics defined by the agg_type
on the column within each group. agg_type can be ‘count’, ‘mean’ or ‘sum’.

	Returns

	Analysis object that can be executed using
run method to
return aggregation results. The results can be accessed as a pandas
dataframe using .to_dataframe().

	Return type

	GroupbyAggAnalysis

Note: privacy exposure estimate for this analysis is not supported.

Example

For each age group and gender, compute the mean income.

>>> groupby_agg_view(ds, ["AGE", "GENDER"], "INCOME", "mean").run(minimum_dataset_size=1000)

For each week, compute the mean and total transaction amount.

>>> groupby_agg_view(ds, ["WEEK"], agg_attr_and_type=[("mean", "AMOUNT"), ("sum", "AMOUNT")]).run()

Look at Randomization Intervals for each group (only for ‘count’ and ‘sum’).

>>> rr = groupby_agg_view(ds, ["WEEK"], "AMOUNT", "mean").run(rich_result=True)
>>> ri_dict = rr.metadata
>>> ri_dict
{
 (1,): RandomizationInterval(...),
 (2,): RandomizationInterval(...)
 ...
}
>>> ri_dict[(1,)]
RandomizationInterval(...)

Look at Randomization Interval for multiple aggregate results.

>>> rr = groupby_agg_view(ds, ["YEAR", "WEEK"], agg_attr_and_type=[("mean", "AMOUNT"), ("sum", "AMOUNT")]).run()
>>> ri_dict = rr.metadata
>>> ri_dict[(2020, 1)][0]
RandomizationInterval(...)

Machine Learning

Unsupervised learning

	
leapyear.analytics.kmeans(xs, dataset, n_iters=10, n_clusters=3)

	Analysis: K-means clustering.

Identifies centers of clusters for a set of data points, by

	Randomly initializing a chosen number of cluster centers (centroids) in the
feature space

	Associating each data point with the nearest centroid

	Iteratively adjusting centroids to locations based on differentially private
computation of the mean for each feature

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of attribute names that are the features.

	dataset (DataSet) – The DataSet of the attributes.

	n_iters (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations to run k-means for

	n_clusters (int [https://docs.python.org/3/library/functions.html#int]) – Number of clusters to generate

	Returns

	Analysis object that can be executed using the run() method.
Once executed, it would output clustering analysis
results, such as centroids.

	Return type

	ClusteringAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.eval_kmeans(centroids, xs, dataset)

	Analysis: Evaluate the K-means model.

Evaluate the clustering model by computing the
Normalized Intra Cluster Variance (NICV).

	Parameters

	
	centroids (ClusterModel) – The model (generated using kmeans) to evaluate

	xs (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of attribute names that are the features.

	dataset (DataSet) – The DataSet of the attributes.

	Returns

	Analysis representing evaluation of a clustering model.
It can be executed using the run() method
to output evaluation metric value.

	Return type

	ScalarAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.pca(xs, dataset, **kwargs)

	Principal Component Analysis.

Compute the Principal Component Analysis (PCA) of the set of attributes
using a differentially private algorithm.

NOTE: This analysis does not require run().

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of attribute names representing features to be considered for this analysis.

	dataset (DataSet) – DataSet that includes these attributes.

	max_timeout_sec – Specifies the maximum amount of time (in seconds) the user is willing to wait for a
response. If set to None, this function will poll the server indefinitely.
If it is run with scale or center set to True, the timeout will be multiplied.
Defaults to waiting forever.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ndarray, ndarray]

	Returns

	
	explained_variances – Variance explained by each of the principal components - in other words, variance of
each principal component coordinate when considered as feature on the input dataset.

	pca_matrix – Transformation matrix, that can be used to translate original features to principal
component coordinates. If all principal components are included, this becomes a square
matrix corresponding to orthogonal transformation (e.g. reflection).

This matrix can be used to generate principal component features using
leapyear.dataset.DataSet.transform() operation, as in:

tfds = ds.transform(x_vars, pca_matrix, 'pca')

NOTE: Signs may not match PCA transformation matrix computed by scikit-learn.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

Supervised learning

	
leapyear.analytics.basic_linreg(xs, y, dataset, *, affine=True, l1reg=0.0, l2reg=1.0, parameter_bounds=None)

	Analysis: Linear regression.

Implements a differentially private algorithm to represent outcome (target) variable
as a linear combination of selected features.

Note

To help ensure that the differentially private training process can effectively
optimize regression coefficients, it’s important to re-scale features
(both dependent/target and independent/explanatory) to a similar domain (e.g. [0,1]).
This can be done using leapyear.feature.BoundsScaler and will help ensure
that the domain being searched for the coefficient will include the optimal model.
See LeapYear guides [https://guides.leapyear.io/docs/effectively-training-ml-models#improving-regression-stability]
for this and other recommendations on training accurate regressions.

Note

Differentially private regressions aim to optimize models for predictive tasks,
while protecting sensitive information from being learned from the trained model.
They are not guaranteed to result in coefficients close to those that a
non-differentially private algorithm would learn. In other words, while regressions
trained with differential privacy may excel at predictive tasks, keep in mind that
these were not designed for inference.

Please see the guides [https://guides.leapyear.io/docs/effectively-training-ml-models]
for more details on using regressions in LeapYear.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	affine (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, fit an intercept term.

	l1reg (float [https://docs.python.org/3/library/functions.html#float]) – The L1 regularization. Default value: 0.0.

	l2reg (float [https://docs.python.org/3/library/functions.html#float]) – The L2 regularization. Default value: 1.0.
Must be at least 0.0001 to limit the randomization effect
for models optimized via objective perturbation.

	parameter_bounds (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]]) – Restriction on the model parameters, including the intercept. Required for differential
privacy. Default value: -10.0 to 10.0 for each parameter

	Returns

	Analysis representing the regression problem.
It can be executed using the run() method
to output calibrated model.

	Return type

	GenLinAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.generalized_linreg(xs, y, dataset, *, affine=True, l2reg=1.0, weight=None, offset=None, max_iters=25, family='gaussian', link='identity', link_power=0, variance_power=1)

	Analysis: Generalized linear regression.

Implements a differentially private algorithm to represent outcome (target) variable
as a linear combination of selected features. This computation is based on the
iterative weighted least squares algorithm. Trains using the “glm” algorithm.

Available generalizations include:

	offset of outputs based on pre-existing model - this enables modeling
of residual

	use of alternative link functions applied to the linear combination of features

	application of regularization and weights during model optimization.

Note

Differentially private regressions aim to optimize models for predictive tasks,
while protecting sensitive information from being learned from the trained model.
They are not guaranteed to result in coefficients close to those that a
non-differentially private algorithm would learn. In other words, while regressions
trained with differential privacy may excel at predictive tasks, keep in mind that
these were not designed for inference.

Please see the guides [https://guides.leapyear.io/docs/effectively-training-ml-models]
for more details on using regressions in LeapYear.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of Attributes or attribute names to be used as features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The Attribute or attribute name of the target.

	dataset (DataSet) – The DataSet of the attributes.

	affine (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the algorithm should fit an intercept term.

	l2reg (float [https://docs.python.org/3/library/functions.html#float]) – The L2 regularization parameter.
Must be non-negative.

	weight (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]) – Optional column used to weight each sample.
Implies generalized regression.

	offset (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]) – Optional column for offset in offset regression.
Implies generalized regression.

	max_iters (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Optional maximum number of iterations for fitting the regression.
Note that regardless of this setting, the system would often stop before reaching
max_iterations - e.g. after a single iteration.
In such cases, higher value for max_iterations may lead to less privacy allocated to each
iteration, and ultimately, higher randomization effect.

	family (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional distribution of the label.
Implies generalized regression.
Possible values here are ‘gaussian’ (the default), ‘poisson’, ‘gamma’ and ‘tweedie’.

	link (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional link function between mean of label distribution and prediction.
Implies generalized regression.
Possible values depend on family: ‘gaussian’ supports only ‘identity’
(default), ‘log’ and ‘inverse’; ‘poisson’ supports only ‘log’
(default), ‘identity’ and ‘sqrt’; ‘gamma’ supports only ‘inverse’
(default), ‘identity’ and ‘log’.
There is no link function for the ‘tweedie’ family, use variance_power
and link_power parameters instead.

	link_power (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – For the ‘tweedie’ distribution only, the exponent of the link function.
Default value is 0, which is equivalent to ‘identity’ link.

	variance_power (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – For the ‘tweedie’ distribution only, the exponent of the variance.
Default value is 1, which is equivalent to ‘gaussian’ family.

	Returns

	Analysis of the regression problem, which could be executed using run() function
to output calibrated model.

	Return type

	GenLinAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.logreg(xs, y, dataset, affine=True, l1reg=0.0, l2reg=1.0)

	Analysis: Logistic regression.

Implements a differentially private algorithm to represent outcome (target) variable
as a logit-transformation of a linear combination of selected features. Trains using the
“basic” algorithm.

Available generalizations include

	regularization applied during model optimization

Note

To help ensure that the differentially private training process can effectively
optimize regression coefficients, it’s important to re-scale features
(both dependent/target and independent/explanatory) to a similar domain (e.g. [0,1]).
This can be done using leapyear.feature.BoundsScaler and will help ensure
that the domain being searched for the coefficient will include the optimal model.
See LeapYear guides [https://guides.leapyear.io/docs/effectively-training-ml-models#improving-regression-stability]
for this and other recommendations on training accurate regressions.

Note

Differentially private regressions aim to optimize models for predictive tasks,
while protecting sensitive information from being learned from the trained model.
They are not guaranteed to result in coefficients close to those that a
non-differentially private algorithm would learn. In other words, while regressions
trained with differential privacy may excel at predictive tasks, keep in mind that
these were not designed for inference.

Please see the guides [https://guides.leapyear.io/docs/effectively-training-ml-models]
for more details on using regressions in LeapYear.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	affine (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, fit an intercept term.

	l1reg (float [https://docs.python.org/3/library/functions.html#float]) – The L1 regularization. Default value: 0.0.

	l2reg (float [https://docs.python.org/3/library/functions.html#float]) – The L2 regularization. Default value: 1.0.

	Returns

	Analysis training the logistic regression model.
It can be executed using the run() method
to output the calibrated model.

	Return type

	GenLinAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.generalized_logreg(xs, y, dataset, *, affine=True, l1reg=1.0, l2reg=1.0, weight=None, offset=None, max_iters=25, link='logit')

	Analysis: Generalized logistic regression.

Implements a differentially private algorithm to represent the outcome (target) variable
as a logit-transformation of a linear combination of selected features. This computation
is based on the iterative weighted least squares algorithm. Trains using the “glm” algorithm.

Available generalizations include:

	offset of outputs based on pre-existing model - this enables modeling
of residual

	use of alternative link functions applied to the linear combination of features

	application of regularization and weights during model optimization.

Note

Differentially private regressions aim to optimize models for predictive tasks,
while protecting sensitive information from being learned from the trained model.
They are not guaranteed to result in coefficients close to those that a
non-differentially private algorithm would learn. In other words, while regressions
trained with differential privacy may excel at predictive tasks, keep in mind that
these were not designed for inference.

Please see the guides [https://guides.leapyear.io/docs/effectively-training-ml-models]
for more details on using regressions in LeapYear.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of Attributes or attribute names to be used as features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The Attribute or attribute name of the target.

	dataset (DataSet) – The DataSet of the attributes.

	affine (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the algorithm should fit an intercept term.

	l2reg (float [https://docs.python.org/3/library/functions.html#float]) – The L2 regularization parameter.
Must be non-negative.

	weight (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]) – Optional column used to weight each sample.
Implies generalized regression.

	offset (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]) – Optional column for offset in offset regression.
Implies generalized regression.

	max_iters (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Optional maximum number of iterations for fitting the regression.
Note that regardless of this setting, the system would often stop before reaching
max_iterations - e.g. after a single iteration.
In such cases, higher value for max_iterations may lead to less privacy allocated to each
iteration, and ultimately, higher randomization effect.

	link (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional link function between mean of label distribution and prediction.
Implies generalized regression.
Possible values are ‘logit’ (default), ‘probit’ and ‘cloglog’.

	Returns

	Analysis of the regression problem, which could be executed using run() function
to output calibrated model.

	Return type

	GenLinAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.gradient_boosted_tree_classifier(xs, y, dataset, max_depth=3, max_iters=5, max_bins=32)

	Analysis: Gradient boosted tree classifier.

This analysis trains a randomized variant of gradient boosted tree
classifier to predict a BOOLEAN outcome (target).

The algorithm works by iteratively training individual decision trees
to predict a “residual” of the model built so far, and then integrating
each newly built decision tree into the ensemble model to better predict
the probability of the positive label.

Weights are used at different stages:

	during training of individual decision trees, to focus attention on
the areas where the model consistently underperforms, and

	when combining individual decision trees to predict probability of
the positive label.

Calibrated level of randomization is applied to individual leaves of the
decision trees to help protect privacy of the individual records used for
model training.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attributes or attribute names that are used as explanatory
features for the analysis.
Each attribute must be either BOOL, INT, REAL
or FACTOR.
Nullable types are not supported and must be converted to non-nullable
- e.g. via coalesce.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute or attribute name that is used as an outcome (target)
of the classification model. Must be BOOLEAN type, as only
binary classification models are supported.
Nullable types are not supported and must be converted to non-nullable
- e.g. via coalesce.

	dataset (DataSet) – The DataSet containing both explanatory features and outcome attributes.

	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – The maximum depth (or height) of any tree in the ensemble produced by
the algorithm. Default: 3

	max_iters (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of iterations of the algorithm.
This corresponds to the maximum number of individual decision trees
in the ensemble. Default: 5

	max_bins (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of bins for features used in constructing trees.
Default: 32

Note

Maximum number of bins should be set to no less than the number of
distinct possible values of the FACTOR attributes used as
explanatory features.

	Returns

	Analysis that will train the gradient boosted tree classifier.
It can be executed using the run() method.

	Return type

	GradientBoostedTreeClassifierModelAnalysis

See also

Gradient tree boosting [https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.random_forest(xs, y, dataset, n_trees=100, height=3)

	Analysis: Random Forest Classifier.

Generate a random forest model to predict probability associated with each
target class.

Random forests combine many decision trees in order to reduce the risk of overfitting.

Each decision tree is developed on a random subset of observations - and is
limited to prescribed height.

Individual node split decisions are made to maximize split value (or gain) - with a variation
that a differentially private algorithm is used to count the number of observations
belonging to each target class on both sides of the split.

Specifically, split value (or gain) is defined as reduction in combined Gini impurity measure,
associated with introducing the split for a given parent node. Here

	Gini impurity for any given node (parent or child) is calculated based on distribution
of observations within the node across different outcome (target) classes

	To compute combined impurity of the pair of nodes, individual node impurities for the
two children nodes are averaged proportionately to their share of observations

Categorical features are typically handled by evaluating various splits corresponding to
random subsets of the available categories.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are used as features for explanatory analysis.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome (target).

	dataset (DataSet) – The DataSet containing both explanatory features and outcome attributes.

	n_trees (int [https://docs.python.org/3/library/functions.html#int]) – The number of trees to use in the random forest. Default: 100

	height (int [https://docs.python.org/3/library/functions.html#int]) – The maximum height of the trees. Default: 3

	Returns

	Analysis training the random forest model.
It can be executed using the run() method
to output the analysis results which include the calibrated random
forest model, feature importance statistics, etc.

	Return type

	ForestModelClassifierAnalysis

See also

Gini impurity [https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.regression_trees(xs, y, dataset, n_trees=100, height=3)

	Analysis: Random Forest Regressor (regression trees).

Generate a regression trees model to predict value of target variable.

Regression trees are built similarly to random forests, but instead of
predicting the probability that the target variable takes a certain
categorical value (i.e., classification), they predict a real value of the
target variable (i.e., regression).

The impurity metric in this case is the variance of the target variable
for the datapoints that fall into the current node’s partition.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are used as features for
explanatory analysis.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome (target).

	dataset (DataSet) – The DataSet containing both explanatory features and target attribute.

	n_trees (int [https://docs.python.org/3/library/functions.html#int]) – The number of trees to use in the random forest. Default: 100.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The maximum height of the trees. Default: 3.

	Returns

	Analysis training the regression trees model.
It can be executed using the run() method
to output the analysis results which include the calibrated random
forest model, feature importance statistics, etc.

	Return type

	ForestModelRegressionAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.eval_linreg(glm, xs, y, dataset, metric='mse')

	Analysis: Evaluate a linear regression model.

	Parameters

	
	glm (GLM) – The model (generated using linreg) to evaluate

	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – Linear regression evaluation metric: ‘mse’/’mean_squared_error’ or
‘mae’/’mean_absolute_error’.

Note

During the calculation of mse and
mae metrics, the individual values of
absolute error are restricted to be no greater
than the length of the interval of possible values of
the target attribute, as seen in the dataset schema.
For example, if the target attribute contains values
in the interval [-50, 50], then the absolute error of
any individual prediction used in computing the mean
will be no greater than 100.

	Returns

	Analysis representing evaluation of a regression model.
It can be executed using the run() method
to output evaluation metric value.

	Return type

	ScalarAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.eval_logreg(glm, xs, y, dataset, metric='accuracy')

	Analysis: Evaluate a logistic regression model.

	Parameters

	
	glm (GLM) – The model (generated using logreg) to evaluate

	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – Logistic regression evaluation metric.
Examples: ‘accuracy’, ‘logloss’, ‘auroc’, ‘aupr’.

	Returns

	Analysis representing evaluation of a logistic regression model.
It can be executed using the run() method
to output evaluation metric value.

	Return type

	ScalarAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.eval_gbt_classifier(gbt, xs, y, dataset, metric='accuracy')

	Analysis: Evaluate a gradient boosted tree (GBT) classifier model.

	Parameters

	
	gbt (GradientBoostedTreeClassifier) – The model to evaluate.

	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – GBT evaluation metric.
Currently only supports ‘accuracy’.

	Returns

	Analysis representing evaluation of a GBT classifier model.
It can be executed using the run() method
to output the value of the evaluation metric.

	Return type

	ScalarAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.eval_random_forest(rf, xs, y, dataset, metric='accuracy')

	Analysis: Evaluate a random forest model.

	Parameters

	
	rf (RandomForestClassifier) – The model (generated using random_forest) to evaluate

	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – Forest evaluation metric.
Examples: ‘logloss’, ‘accuracy’, ‘auroc’, ‘aupr’

	Returns

	Analysis representing evaluation of a random forest model.
It can be executed using the run() method
to output evaluation metric value.

	Return type

	ScalarAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.eval_regression_trees(rf, xs, y, dataset, metric='mse')

	Analysis: Evaluate a regression trees model.

	Parameters

	
	rf (RandomForestClassifier) – The model (generated using regression_trees) to evaluate

	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – Model evaluation metric. Examples: ‘mse’/’mean_squared_error’ or
‘mae’/’mean_absolute_error’.

Note

During the calculation of mse and mae metrics,
the individual values of absolute error are restricted
to be no greater than the length of the interval of
possible values of the target attribute, as seen in
the dataset schema. For example, if the target attribute
contains values in the interval [-50, 50], then the absolute
error of any individual prediction used in computing the mean
will be no greater than 100.

	Returns

	Analysis representing evaluation of a regression trees model.
It can be executed using the run() method
to output evaluation metric value.

	Return type

	ScalarAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.roc(model, xs, y, dataset, thresholds=5)

	Compute the ConfusionCurves.

For each threshold value, compute the normalized confusion matrix using the model.
The confusion matrix contains the true positive rate, the true
negative rate, the false positive rate and the false negative rate.

	Parameters

	
	model (Union [https://docs.python.org/3/library/typing.html#typing.Union][GLM, RandomForestClassifier]) – The model to evaluate the confusion curves on.

	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	thresholds (Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]]) – If int, then generate approximately thresholds (rounded to the closest power of 2) number
of thresholds using recursive medians. If a sequence of floats, then use the list as
the thresholds.

	Returns

	Analysis of the confusion curve, which can be executed using the
run() method to output various evaluation metrics.

	Return type

	ConfusionModelAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.cross_val_score_linreg(xs, y, dataset, *, affine=True, l1reg=1.0, l2reg=1.0, cv=3, metric='mean_squared_error', parameter_bounds=None)

	Analysis: Compute the linear regression cross validation score of the set of attributes.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	affine (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, fit an intercept term.

	l1reg (float [https://docs.python.org/3/library/functions.html#float]) – The L1 regularization. Default value: 1.0.

	l2reg (float [https://docs.python.org/3/library/functions.html#float]) – The L2 regularization. Default value: 1.0.
Must be at least 0.0001 to limit the randomization effect.

	cv (int [https://docs.python.org/3/library/functions.html#int]) – Number of folds in k-fold cross validation.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – The metric for evaluating the regression.
Examples: ‘mae’, ‘mse’, ‘r2’.

	parameter_bounds (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]]) – Restriction on the model parameters, including the intercept. Required for differential
privacy. Default value: -10.0 to 10.0 for each parameter

	Returns

	Analysis of the cross-validation scores for the regression model.
It can be executed using the run() method to generate
cross-validation results.

	Return type

	CrossValidationAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.cross_val_score_logreg(xs, y, dataset, cv=3, affine=True, l1reg=0.1, l2reg=0.1, metric='accuracy')

	Analysis: Compute the logistic regression cross validation score of the set of attributes.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	affine (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, fit an intercept term.

	l1reg (float [https://docs.python.org/3/library/functions.html#float]) – The L1 regularization. Default value: 0.1.

	l2reg (float [https://docs.python.org/3/library/functions.html#float]) – The L2 regularization. Default value: 0.1.
Must be at least 0.0001 to limit the randomization effect.

	cv (int [https://docs.python.org/3/library/functions.html#int]) – Number of folds in k-fold cross validation.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – The metric for evaluating the logistic regression.
Examples: ‘accuracy’, ‘logloss’, ‘auroc’, ‘aupr’.

	Returns

	Analysis of the cross-validation scores for the regression model.
It can be executed using the run() method to generate
cross-validation results.

	Return type

	CrossValidationAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.cross_val_score_random_forest(xs, y, dataset, n_trees=100, height=3, cv=3, metric='mean_squared_error')

	Analysis: Compute the random forest cross validation score of the set of attributes.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	n_trees (int [https://docs.python.org/3/library/functions.html#int]) – Number of trees.

	height (int [https://docs.python.org/3/library/functions.html#int]) – Maximum height of trees.

	cv (int [https://docs.python.org/3/library/functions.html#int]) – Number of folds in k-fold cross validation

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – The metric for evaluating the regression

	Returns

	Analysis of the cross-validation scores for the random forest model.
It can be executed using the run() method to generate
cross-validation results.

	Return type

	CrossValidationAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.cross_val_score_regression_trees(xs, y, dataset, n_trees=100, height=3, cv=3, metric='mean_squared_error')

	Analysis: Compute the regression trees cross validation score of the set of attributes.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attribute names that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attribute name that is the outcome.

	dataset (DataSet) – The DataSet of the attributes.

	n_trees (int [https://docs.python.org/3/library/functions.html#int]) – Number of trees.

	height (int [https://docs.python.org/3/library/functions.html#int]) – Maximum height of trees.

	cv (int [https://docs.python.org/3/library/functions.html#int]) – Number of folds in k-fold cross validation

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – The metric for evaluating the regression

	Returns

	Analysis of the cross-validation scores for the regression trees model.
It can be executed using the run() method to generate
cross-validation results.

	Return type

	CrossValidationAnalysis

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.hyperopt_linreg(xs, y, dataset, *, cv, train_fraction, metric, n_iter=100, l1_bounds=(1e-10, 10000000000.0), l2_bounds=(1e-10, 10000000000.0), fit_intercept=None, parameter_bounds=None)

	Analysis: Hyperparameter optimization for linear regression.

Calibrate a linear regression model by optimizing its cross-validation score with respect to
model hyperparameters - L_1 and L_2 regularization parameters and presence of intercept.

See below for a pseudo-code of the algorithm:

Split the dataset into ds_train_val/ds_holdout based on train_fraction.
Use k-fold cross validation to split ds_train_val into cv pairs (ds_train, ds_val).
Initialize cv_history = []
For 1..n_iter
 pick a set of hyperparameters (hp) to test based on cv_history.
 use hp to calibrate a model on each cross-validation set
 evaluate it on corresponding sample set-aside for cross-validation
 compute an average cv score and append it to cv_history.
Pick the hyper parameters with the best cv score.
Train a model using the complete ds_train_val data set.
Evaluate the model on the holdout data set.
Return resulting model and its performance on the holdout set.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attributes that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The target attribute.

	dataset (DataSet) – The dataset containing the attributes.

	cv (int [https://docs.python.org/3/library/functions.html#int]) – The number of cross-validation steps to perform for each candidate set of hyperparameters.

	train_fraction (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of the dataset to use set aside for model training and cross-validation –
to be split further according to k-fold cross-validation strategy.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – Model performance metric to optimize. Examples: ‘mean_squared_error’,
‘mean_absolute_error’, ‘r2’

	n_iter (int [https://docs.python.org/3/library/functions.html#int]) – The number of optimization steps. Default: 100

	l1_bounds (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]) – Lower and upper bounds for l1 regularization. Default: (1E-10, 1E10)

	l2_bounds (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]) – Lower and upper bounds for l2 regularization. Default: (1E-10, 1E10)

	fit_intercept (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – If None, search will consider both options.

	parameter_bounds (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]]) – Restriction on the model parameters, including the intercept. Required for differential
privacy. Default value: -10.0 to 10.0 for each parameter

	Returns

	Analysis object representing the model calibration process with
hyperparameter optimization.
It can be executed using the run() method to output the
analysis results, including

	model calibrated with recommended hyperparameters and

	its performance on the holdout dataset.

	Return type

	HyperOptAnalysis

See also

Paper with hyperparameter optimization algorithm [http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.hyperopt_logreg(xs, y, dataset, cv, train_fraction, metric, n_iter=100, l1_bounds=(1e-10, 10000000000.0), l2_bounds=(1e-10, 10000000000.0), fit_intercept=None)

	Analysis: Hyperparameter optimization for logistic regression.

Calibrate a logistic regression model by optimizing its cross-validation score with respect to
model hyperparameters - L_1 and L_2 regularization parameters and presence of intercept.

See below for a pseudo-code of the algorithm:

Split the dataset into ds_train_val/ds_holdout based on train_fraction.
Use k-fold cross validation to split ds_train_val into cv pairs (ds_train, ds_val).
Initialize cv_history = []
For 1..n_iter
 pick a set of hyperparameters (hp) to test based on cv_history.
 use hp to calibrate a model on each cross-validation set
 evaluate it on corresponding sample set-aside for cross-validation
 compute an average cv score and append it to cv_history.
Pick the hyper parameters with the best cv score.
Train a model using the complete ds_train_val data set.
Evaluate the model on the holdout data set.
Return resulting model and its performance on the holdout set.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attributes that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The target attribute.

	dataset (DataSet) – The dataset containing the attributes.

	cv (int [https://docs.python.org/3/library/functions.html#int]) – The number of cross-validation steps to perform for each candidate set of hyperparameters.

	train_fraction (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of the dataset to set aside for model training and cross-validation –
to be split further according to k-fold cross-validation strategy.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – Model performance metric to optimize.
Examples: ‘accuracy’, ‘logloss’, ‘auroc’, ‘aupr’.

	n_iter (int [https://docs.python.org/3/library/functions.html#int]) – The number of optimization steps. Default: 100

	l1_bounds (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]) – Lower and upper bounds for l1 regularization. Default: (1E-10, 1E10)

	l2_bounds (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]) – Lower and upper bounds for l2 regularization. Default: (1E-10, 1E10)

	fit_intercept (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – If None, search will consider both options.

	Returns

	Analysis object representing the model calibration process with
hyperparameter optimization.
It can be executed using the run() method to output the
analysis results, including

	model calibrated with recommended hyperparameters and

	its performance on the holdout dataset.

	Return type

	HyperOptAnalysis

See also

Paper with hyperparameter optimization algorithm [http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.hyperopt_rf(xs, y, dataset, cv, train_fraction, metric, n_iter=100, max_trees=1000, max_depth=20)

	Analysis: Hyperparameter optimization for a random forest model.

Calibrate a random forest model by optimizing its cross-validation score with respect to
model hyperparameters - number of trees and individual tree depth (or height) limit.

See below for a pseudo-code of the algorithm:

Split the dataset into ds_train_val/ds_holdout based on train_fraction.
Use k-fold cross validation to split ds_train_val into cv pairs (ds_train, ds_val).
Initialize cv_history = []
For 1..n_iter
 pick a set of hyperparameters (hp) to test based on cv_history.
 use hp to calibrate a model on each cross-validation set
 evaluate it on corresponding sample set-aside for cross-validation
 compute an average cv score and append it to cv_history.
Pick the hyper parameters with the best cv score.
Train a model using the complete ds_train_val data set.
Evaluate the model on the holdout data set.
Return resulting model and its performance on the holdout set.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attributes that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The target attribute.

	dataset (DataSet) – The dataset containing the attributes.

	cv (int [https://docs.python.org/3/library/functions.html#int]) – The number of cross-validation steps to perform for each candidate set of hyperparameters.

	train_fraction (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of the dataset to set aside for model training and cross-validation –
to be split further according to k-fold cross-validation strategy.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – The metric to optimize. Examples: ‘accuracy’, ‘logloss’, ‘auroc’, ‘aupr’

	n_iter (int [https://docs.python.org/3/library/functions.html#int]) – The number of optimization steps. Default: 100

	max_trees (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of trees. Default: 1000

	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – Maximum tree depth. Default: 20

	Returns

	Analysis object representing the model calibration process with
hyperparameter optimization.
It can be executed using the run() method to output the
analysis results, including

	model calibrated with recommended hyperparameters and

	its performance on the holdout dataset.

	Return type

	HyperOptAnalysis

See also

Paper with hyperparameter optimization algorithm [http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	
leapyear.analytics.hyperopt_regression_trees(xs, y, dataset, cv, train_fraction, metric, n_iter=100, max_trees=1000, max_depth=20)

	Analysis: Hyperparameter optimization for a regression trees model.

Calibrate a regression trees model by optimizing its cross-validation score with respect to
model hyperparameters - number of trees and individual tree depth (or height) limit.

See below for a pseudo-code of the algorithm:

Split the dataset into ds_train_val/ds_holdout based on train_fraction.
Use k-fold cross validation to split ds_train_val into cv pairs (ds_train, ds_val).
Initialize cv_history = []
For 1..n_iter
 pick a set of hyperparameters (hp) to test based on cv_history.
 use hp to calibrate a model on each cross-validation set
 evaluate it on corresponding sample set-aside for cross-validation
 compute an average cv score and append it to cv_history.
Pick the hyper parameters with the best cv score.
Train a model using the complete ds_train_val data set.
Evaluate the model on the holdout data set.
Return resulting model and its performance on the holdout set.

	Parameters

	
	xs (List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of attributes that are the features.

	y (Union [https://docs.python.org/3/library/typing.html#typing.Union][Attribute, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The target attribute.

	dataset (DataSet) – The dataset containing the attributes.

	cv (int [https://docs.python.org/3/library/functions.html#int]) – The number of cross-validation steps to perform for each candidate set of hyperparameters.

	train_fraction (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of the dataset to set aside for model training and cross-validation –
to be split further according to k-fold cross-validation strategy.

	metric (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]) – The metric to optimize. Examples: ‘mae’, ‘mse’, ‘r2’

	n_iter (int [https://docs.python.org/3/library/functions.html#int]) – The number of optimization steps. Default: 100

	max_trees (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of trees. Default: 1000

	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – Maximum tree depth. Default: 20

	Returns

	Analysis object representing the model calibration process with
hyperparameter optimization.
It can be executed using the run() method to output the
analysis results, including

	model calibrated with recommended hyperparameters and

	its performance on the holdout dataset.

	Return type

	HyperOptAnalysis

See also

Paper with hyperparameter optimization algorithm [http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf]

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

Context Managers

	
leapyear.analytics.ignore_computation_cache()

	Temporary context where computations do not utilize the computation cache.

The computation cache is intended to prevent wasting privacy exposure on queries that were
previously computed. Entering this context manager will disable the use of the cache and
allow repeated computations to return different differentially private answers.

Example

An administrator wants to run a count multiple times to estimate the random distribution of
responses around the precise value.

>>> with ignore_computation_cache():
>>> results = [la.count_rows(table).run() for _ in range(10)]

See also

	To override the behavior for a single computation, see the cache keyword argument in
run() or
check().

	The default_analysis_caching keyword argument in Client will
temporarily be overwritten within this context manager.

Note

Additional permissions may be required to disable the computation cache.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
leapyear.analytics.precise_computations(precise=True)

	Temporary context specifying if the computations are precise or not.

Computations requested within this context would be executed in precise mode, where
differential privacy is not applied.

	Parameters

	precise (bool [https://docs.python.org/3/library/functions.html#bool]) – True to enable precise computations within the context, False to disable them.

Example

An administrator wants to compare the responses of a number of computations with and
without differential privacy applied. Precise mode may not be available for all computations.

>>> def my_computation():
>>> symbols = ("APPL", "GOOG", "MSFT"):
>>> return [la.count_rows(table.where(col("SYM") == lit(val)).run() for val in symbols]
>>>
>>> res_dp = my_computation()
>>> with precise_computations():
>>> res_no_dp = my_computation()

See also

	To override the behavior for a single computation, see the precise keyword argument in
run() or
check().

Note

Additional permissions may be necessary to enable precise computations.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Save/Load Models

LeapYear save and load machine learning models utilities.

	
leapyear.ml_import_export.save(model, path_or_fd)

	Save machine learning models in json to either a file or a file-like object.

	Parameters

	
	model (Union [https://docs.python.org/3/library/typing.html#typing.Union][ClusterModel, GLM, GradientBoostedTreeClassifier, RandomForestClassifier, RandomForestRegressor, RichResult[Union [https://docs.python.org/3/library/typing.html#typing.Union][ClusterModel, GLM, GradientBoostedTreeClassifier, RandomForestClassifier, RandomForestRegressor], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Any machine learning model executed using the run() method.

	path – The path where to save the file in the file system or a descriptor for an in-memory stream.

Example

>>> from leapyear.ml_import_export import save
>>> save(model, 'model.json')

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
leapyear.ml_import_export.load(path_or_fd, expected_model_type=None, **kwargs)

	Load machine learning models from a file-like object.

	Parameters

	
	path – The path in the file system or an in-memory stream from where to load the model.

	expected_mode_type – If None it won’t check that the model being loaded is of the type specified.
Otherwise it checks that the model loaded is of the type expected.

	rf_type – When loading RandomForest models with serialization number 0, setting this to
“classification” or “regression” will load the model as a RandomForestClassifier
or RandomForestRegressor objects, respectively. If not specified, a RandomForest model
will raise an error. The value is ignored for all other model types.

Examples

	Loading a previously saved model of unspecified type

>>> from leapyear.ml_import_export import load
>>> model = load('model.json')

	Loading a previously saved RandomForestClassifier model

>>> from leapyear.ml_import_export import load
>>> model = load('random_forest_classifier.json', RandomForestClassifier)

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][ClusterModel, GLM, GradientBoostedTreeClassifier, RandomForestClassifier, RandomForestRegressor]

Module leapyear.analytics.classes

Classes related to LeapYear analyses.

Analysis Classes

This section documents classes that define and process analyses in the LeapYear system.

Main Classes

	
class leapyear.analytics.classes.Analysis(analysis, relation)

	Any analysis that can be performed on the LeapYear server.

It contains an analysis and a relation on which the analysis should
be performed.

	
check(*, cache=None, allow_max_budget_allocation=None, precise=None, **kwargs)

	Check the analysis for errors.

If any errors are present, the function will raise a descriptive error.
If no errors are found, then the function will return self.

	Return type

	Analysis[~_Result, ~_Model, ~_ModelMetadata]

	
run(*, detach: Literal[True], cache: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, allow_max_budget_allocation: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, precise: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, rich_result: bool [https://docs.python.org/3/library/functions.html#bool] = False, max_timeout_sec: Optional[float [https://docs.python.org/3/library/functions.html#float]] = None, minimum_dataset_size: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, **kwargs: Any) → leapyear.analytics.classes.AsyncAnalysis[_Result, _Model, _ModelMetadata]

	
run(*, rich_result: Literal[True], cache: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, allow_max_budget_allocation: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, precise: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, max_timeout_sec: Optional[float [https://docs.python.org/3/library/functions.html#float]] = None, minimum_dataset_size: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, **kwargs: Any) → leapyear.analytics.classes.RichResult[_Model, _ModelMetadata]

	
run(*, cache: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, allow_max_budget_allocation: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, precise: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, max_timeout_sec: Optional[float [https://docs.python.org/3/library/functions.html#float]] = None, minimum_dataset_size: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, **kwargs: Any) → _Model

	Run analysis.

	Parameters

	
	detach – If True when the analysis is sent to the server, it will return
immediately with an AsyncAnalysis object. The analysis will
be evaluated in the background on the server. The client can check
the result of the analysis later using the AsyncAnalysis
object.

	cache – If True, then the first time this analysis is executed on the
LeapYear server, the result will be cached. Subsequent calls to
the identical analysis (with cache=True) will fetch the cached
version and not contribute to the security cost. If None,
the default caching behavior will be obtained from the connection.

	allow_max_budget_allocation – Default is True. If False, raise an
leapyear.exceptions.DataSetTooSmallException when the
randomness calibration system would run an analysis with the
maximum privacy exposure per computation. If None, the default
value will be obtained from the connection.

	precise – When True, request an answer with no noise added to the computation.

	rich_result – When True, return a result with additional (potentially analysis-specific) metadata,
including the privacy exposure expended in the process of performing the analysis.
Defaults to False.

	max_timeout_sec – When detach=False, specifies the maximum amount of time (in seconds) the user is
willing to wait for a response. If set to None, the analysis will poll the server
indefinitely. When computing on big data or long-running machine learning tasks, we
recommend using the detach=True feature and use the functions provided in
AsyncAnalysis.
Defaults to waiting forever.

	minimum_dataset_size – When minimum_dataset_size is set, prevent computations on data sets that
have fewer rows than the specified value. We recommend using this when an analysis
could filter down to a small number of records, potentially consuming more privacy
budget than is desired. Setting this will spend a small amount of privacy budget to
estimate the number of rows involved in a computation. This value is superseded by
an admin-defined minimum_dataset_size parameter, if the admin’s value is larger.

	Returns

	The result of the analysis. Multiple return types are possible.

	Return type

	Union[_Model, AsyncAnalysis, RichResult[_Model, _ModelMetadata]]

	
maximum_privacy_exposure(minimum_dataset_size=None)

	Maximum privacy exposure associated with running this analysis.

Estimate the maximum incremental privacy exposure that could result
from running this computation for the current user. The result is
represented as a percentage of privacy exposure limit for each
data source.

Note: Estimating maximum privacy exposure may incur a small
amount of privacy exposure.

	Parameters

	minimum_dataset_size (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – When minimum_dataset_size is set, prevent computations on data sets that
have fewer rows than the specified value.

	Returns

	A dictionary that maps a TableIdentifier to the estimated maximum fractional
privacy exposure that running the analysis would incur for the associated table.

	Return type

	FractionalPrivacyExposure

	
class leapyear.analytics.classes.AsyncAnalysis(async_job_id, *, analysis, rich_result)

	Asynchronous job for running analysis queries.

	
check_status()

	Check the status of the given asynchronous job.

	Return type

	AsyncJobStatus

	
cancel()

	Cancel the job.

	
wait_to_cancel(**kwargs)

	Wait for the given asynchronous job to finish.

Same as ‘wait’, but doesn’t error on cancellations. Takes the same arguments as ‘wait’.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
process_result(result)

	Process the result of running an analysis.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][~_Model, RichResult[~_Model, ~_ModelMetadata]]

	
serialize()

	Serialize an external analysis to a string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Analysis Subclasses

This section describes the subclasses of Analysis, generally determined by what type of output they produce.

	
class leapyear.analytics.classes.BoundsAnalysis(analysis, relation)

	Analysis that results in a lower and upper bound.

	
class leapyear.analytics.classes.ClusteringAnalysis(analysis, relation)

	Analysis that results in a clustering model.

	
class leapyear.analytics.classes.ConfusionModelAnalysis(analysis, relation)

	Analysis that results in a ConfusionCurve object.

	
class leapyear.analytics.classes.CountAnalysis(analysis, relation)

	Analysis that results in a scalar count value.

	
class leapyear.analytics.classes.CountAnalysisWithRI(analysis, relation)

	Analysis that computes a scalar count value.

The user can request additional information about the computation with
run(rich_result=True).
A RandomizationInterval object will
be generated.

	
class leapyear.analytics.classes.CrossValidationAnalysis(analysis, relation)

	Analysis that results in multiple results of the same type.

	
class leapyear.analytics.classes.DescribeAnalysis(analysis, relation)

	Analysis that produces a model describing a dataset.

	
class leapyear.analytics.classes.FailAnalysis(analysis, relation)

	An analysis that always fails.

	
class leapyear.analytics.classes.ForestModelClassifierAnalysis(analysis, relation)

	Analysis that results in a forest model.

	
class leapyear.analytics.classes.ForestModelRegressionAnalysis(analysis, relation)

	Analysis that results in a forest model.

	
class leapyear.analytics.classes.GradientBoostedTreeClassifierModelAnalysis(analysis, relation)

	Gradient boosted tree classifier analysis.

When executed, this analysis returns a model object of class
GradientBoostedTreeClassifier.

	
class leapyear.analytics.classes.GroupbyAggAnalysis(analysis, relation)

	Analysis that results in a GroupbyAgg.

	
class leapyear.analytics.classes.GenLinAnalysis(analysis, relation)

	Analysis that results in a generalized linear model.

	
class leapyear.analytics.classes.Histogram2DAnalysis(analysis, relation)

	Analysis that results in a 2d histogram.

	
class leapyear.analytics.classes.HistogramAnalysis(analysis, relation)

	Analysis that results in a histogram.

	
class leapyear.analytics.classes.HyperOptAnalysis(analysis, relation)

	Analysis that returns the result of hyperparameter optimization.

	
class leapyear.analytics.classes.MatrixAnalysis(analysis, relation)

	Analysis that results in a matrix of float values.

	
class leapyear.analytics.classes.ScalarAnalysis(analysis, relation)

	Analysis that results in a scalar float value.

	
class leapyear.analytics.classes.ScalarAnalysisWithRI(analysis, relation)

	Analysis that computes a scalar value.

The user can request additional information about the computation with
run(rich_result=True).
In this case, a
RandomizationInterval object will
be generated.

This likely interval is likely to include the exact value of the
computation on the data sample.

	
class leapyear.analytics.classes.ScalarFromHistogramAnalysis(f, *args)

	Analysis that uses a histogram to compute a scalar value.

	
class leapyear.analytics.classes.SleepAnalysis(analysis, relation)

	An analysis that will sleep for a set amount of microseconds.

	
class leapyear.analytics.classes.TypeAnalysis(analysis, relation)

	Analysis that results list of counts associated with types.

Rich Results

This section documents classes related to rich results and privacy exposure measurements.

	
class leapyear.analytics.classes.RandomizationInterval(estimation_method: str [https://docs.python.org/3/library/stdtypes.html#str], confidence_level: float [https://docs.python.org/3/library/functions.html#float], low: float [https://docs.python.org/3/library/functions.html#float], high: float [https://docs.python.org/3/library/functions.html#float])

	An interval estimating the uncertainty in the exact answer, given randomized output.

A RandomizationInterval can be generated for a subset of the analyses
offered by LeapYear by running an analysis with
run(rich_result = True).

The interval between low and high is expected to include the exact value of the
computation on the data sample with the stated confidence_level (e.g. 95%).

	Parameters

	
	confidence_level (float [https://docs.python.org/3/library/functions.html#float]) – The confidence that the exact answer lies within the interval.

	low (float [https://docs.python.org/3/library/functions.html#float]) – The lower bound of the interval.

	high (float [https://docs.python.org/3/library/functions.html#float]) – The upper bound of the interval.

	estimation_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method used to compute the interval depends on analysis type.

With 'bayesian' method, the randomization interval is obtained
using a posterior distribution analysis based on
non-informative prior, the knowledge of randomized output and the
scale of the randomization effect applied.

With 'approximate' method, the randomization interval is estimated
using simplified simulation process.

Note

The 'approximate' estimation method tends to produce biased
intervals for small data samples.

	
class leapyear.analytics.classes.FractionalPrivacyExposure

	A fractional measure of privacy exposure for a collection of tables.

This is represented by a dictionary, mapping a TableIdentifier to the fraction of total
privacy exposure that has been expended for the table corresponding to the TableIdentifier.

Aggregate Results

This section documents classes related to aggregate resuls from group by operations.

	
class leapyear.analytics.classes.GroupbyAgg(aggregate_type: Sequence[_ml.GroupbyAgg], key_columns: Sequence[Attribute], aggs: Mapping[Tuple[Any, …], float [https://docs.python.org/3/library/functions.html#float]])

	A GroupBy Aggregate.

	
aggregate_type: Sequence[leapyear._tidl.protocol.query.select.machinelearning.GroupbyAgg]

	Alias for field number 0

	
key_columns: Sequence[leapyear.dataset.attribute.Attribute]

	Alias for field number 1

	
aggs: Mapping[Tuple[Any, …], float [https://docs.python.org/3/library/functions.html#float]]

	Alias for field number 2

	
to_dataframe(groups_as_index=True)

	Convert to a pandas DataFrame.

	Parameters

	groups_as_index (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the groupBy columns should be the MultiIndex of the resulting
DataFrame. If False, then the groupBy columns are made into columns of the
output. By default True.

	Returns

	A pandas DataFrame, with a multi-index corresponding to the key columns of the
groupBy operation if groups_as_index = True.

	Return type

	pd.DataFrame

Module leapyear.model

LeapYear models.

Data objects generated from training or evaluating models used in machine learning.

Regression-Based Models

	
class leapyear.model.GLM(affinity: bool [https://docs.python.org/3/library/functions.html#bool], l1reg: float [https://docs.python.org/3/library/functions.html#float], l2reg: float [https://docs.python.org/3/library/functions.html#float], model: GeneralizedLinearModel)

	A representation of a trained Generalized Linear Model (GLM).

Differentially private versions of GLMs are calibrated using various
methods, e.g.

	leapyear.analytics.logreg(),

	leapyear.analytics.linreg(),

	The variants of these methods that optimize model hyperparameters.

Objects of this class store parameters and structure of a
regression model and can be used to generate predictions for regression and classification
problems.

	
affinity: bool [https://docs.python.org/3/library/functions.html#bool]

	Alias for field number 0

	
l1reg: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 1

	
l2reg: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 2

	
model: leapyear._tidl.protocol.algorithms.generalizedlinearmodel.GeneralizedLinearModel

	Alias for field number 3

	
property coefficients

	Model coefficients, excluding intercepts.

	Return type

	ndarray

	
property intercept

	Model intercept, if model has only one coefficient set.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
property intercepts

	Model intercepts, if any.

	Return type

	ndarray

	
property model_type

	Model type (e.g. linear, logistic).

	Return type

	GeneralizedLinearModelType

	
decision_function(xs)

	Decision function of the generalized linear model.

Computes the height of the regression function (xbeta) at the provided points.
This is purely linear transformation of the input features.

In case of logistic model, model would ultimately classify observations based on the
sign of this decision function.

	Parameters

	xs (ndarray) – a set of datapoints for which to predict

	Returns

	The predicted decision function

	Return type

	np.ndarray

	
predict(xs)

	Prediction function of the generalized linear model.

For linear problems, returns the height of the regression line (decision function)
at the data points provided.

For classification problems, returns boolean classification choice,
which is based on the sign of this decision function.

	Parameters

	xs (ndarray) – a set of datapoints for which to predict

	Returns

	the predictions for the points according to the model

	Return type

	np.ndarray

	
predict_proba(xs)

	Probabilities given by generalized linear model.

For logistic classification problems, returns probability that the model assigns to a
positive response (True outcome variable) for each of the data points provided.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of probability scores assigned by the model

	Return type

	np.ndarray

	
predict_log_proba(xs)

	Logarithm of probabilities given by generalized linear model.

For logistic classification problems, returns natural logarithm of probability
that the model assigns to a True outcome for each of the data points provided.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of log-probability scores assigned by the model

	Return type

	np.ndarray

	
to_dict()

	Convert to a dictionary.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
classmethod from_dict(cls, d)

	Convert from a dictionary.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	GLM

	
to_shap()

	Convert the trained model to SHAP format.

The converted model can then be used to construct a LinearExplainer object able to generate
Shapley explanations for new records to which the model would be applied to.

Note that:

	model execution and generation of model score explanations is expected to be done in a production setting by an automated system with direct access to record-level information.

	feature explanations for categorical features are currently not supported. Consider one-hot encoding features to get the benefits of explainable model scores.

Examples

>>> import shap
>>> from leapyear import analytics as la
>>> ...
>>> glm_model = la.logreg(xs, y, ds).run()
>>> glm_explainer = shap.LinearExplainer(glm_model.to_shap(), X_reference)
>>> glm_shap_values = glm_explainer.shap_values(X_to_predict)
>>> ...

In this example:

	The input X_reference used to initialize the explainer object is a pandas.DataFrame containing explanatory variables in the same order as used to train models. It is used to infer what model scores and feature distribution should be considered “typical”.

	The input X_to_predict is a pandas.DataFrame capturing the explanatory variables in the same order as used to train models.

See the SHAP Linear documentation for more information [https://shap.readthedocs.io/en/latest/generated/shap.explainers.Linear.html].

LeapYear has been tested with SHAP version 0.39.0. Older or newer versions are not guaranteed to work.

	Return type

	_ShapGLM

Tree-Based Models

	
class leapyear.model.RandomForestClassifier(ntrees: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int], model: DecisionForest)

	A representation of a trained Random Forest classification model.

Provides methods for making predictions and report on feature importance
statistics.

	
ntrees: int [https://docs.python.org/3/library/functions.html#int]

	Alias for field number 0

	
height: int [https://docs.python.org/3/library/functions.html#int]

	Alias for field number 1

	
model: leapyear._tidl.protocol.algorithms.decisiontree.DecisionForest

	Alias for field number 2

	
predict(xs)

	Prediction function of the random forest classification model.

For classification problems, returns the most likely class
according to the model.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of most likely outcome labels assigned by the model

	Return type

	np.ndarray

	
predict_proba(xs)

	Prediction probability function of the random forest model.

For each of the data points provided, returns probability that the model assigns
to any given outcome.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of probability scores assigned by the model to input data points
and possible outcomes

	Return type

	np.ndarray

	
predict_log_proba(xs)

	Logarithm of probabilities given by random forest model.

For each of the data points provided, returns natural logarithm of probability
that the model assigns to any given outcome.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of log-probability scores assigned by the model to input data points
and possible outcomes

	Return type

	np.ndarray

	
property feature_importance

	Relative feature importance.

Feature importances are derived based on the information collected during model training
with differentially private computations, specifically:

	For each tree and for each split of the tree, lookup value (gain) of
introducing the split, as calculated on training data during model calibration -
and attribute it to the splitting feature. See
leapyear.analytics.random_forest()
for specific calculation of split gain based on a notion of Gini impurity.

	To compute tree-specific feature importances,
sum up split gains across all splits within each tree, weighted (multiplied)
by parent node size, and re-scale these tree-specific feature importances to sum
up to 1 for each tree.

	Average feature importances across all trees in the random forest ensemble to get
final feature importance.

	References:
	
	Hastie, Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.”
2001.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
to_dict()

	Convert to a dictionary.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
classmethod from_dict(cls, d)

	Convert from a dictionary.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	RandomForestClassifier

	
to_shap()

	Convert the trained model to SHAP format.

The converted model can then be used to construct a TreeExplainer object able to generate
Shapley explanations for new records to which the model would be applied to.

Note that:

	model execution and generation of model score explanations is expected to be done in a production setting by an automated system with direct access to record-level information.

	feature explanations for categorical features are currently not supported. Consider one-hot encoding features to get the benefits of explainable model scores.

Examples

>>> import shap
>>> from leapyear import analytics as la
>>> ...
>>> rfc_model = la.random_forest (xs, y, ds).run()
>>> rfc_explainer = shap.TreeExplainer(rfc_model.to_shap(), X_reference)
>>> rfc_shap_values = rfc_explainer.shap_values(X_to_predict)
>>> ...

In this example:

	The input X_reference used to initialize the explainer object is a pandas.DataFrame containing explanatory variables in the same order as used to train models. It is used to infer what model scores and feature distribution should be considered “typical”.

	The input X_to_predict is a pandas.DataFrame capturing the explanatory variables in the same order as used to train models.

See the SHAP Tree documentation for more information [https://shap.readthedocs.io/en/latest/generated/shap.explainers.Tree.html].

LeapYear has been tested with SHAP version 0.39.0. Older or newer versions are not guaranteed to work.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict]

	
class leapyear.model.RandomForestRegressor(ntrees: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int], model: DecisionForest)

	A representation of a trained Random Forest regression model.

	
ntrees: int [https://docs.python.org/3/library/functions.html#int]

	Alias for field number 0

	
height: int [https://docs.python.org/3/library/functions.html#int]

	Alias for field number 1

	
model: leapyear._tidl.protocol.algorithms.decisiontree.DecisionForest

	Alias for field number 2

	
predict(xs)

	Prediction function of the random forest regression model.

For each of the data points provided, returns the prediction that the model assigns.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of predictions assigned by the model to input data points

	Return type

	np.ndarray

	
to_dict()

	Convert to a dictionary.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
classmethod from_dict(cls, d)

	Convert from a dictionary.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	RandomForestRegressor

	
to_shap()

	Convert the trained model to SHAP format.

The converted model can then be used to construct a TreeExplainer object able to generate
Shapley explanations for new records to which the model would be applied to.

Note that:

	model execution and generation of model score explanations is expected to be done in a production setting by an automated system with direct access to record-level information.

	feature explanations for categorical features are currently not supported. Consider one-hot encoding features to get the benefits of explainable model scores.

Examples

>>> import shap
>>> from leapyear import analytics as la
>>> ...
>>> rf_model = la.regression_trees(xs, y, ds).run()
>>> rf_explainer = shap.TreeExplainer(rf_model.to_shap(), X_reference)
>>> rf_shap_values = rf_explainer.shap_values(X_to_predict)
>>> ...

In this example:

	The input X_reference used to initialize the explainer object is a pandas.DataFrame containing explanatory variables in the same order as used to train models. It is used to infer what model scores and feature distribution should be considered “typical”.

	The input X_to_predict is a pandas.DataFrame capturing the explanatory variables in the same order as used to train models.

See the SHAP Tree documentation for more information [https://shap.readthedocs.io/en/latest/generated/shap.explainers.Tree.html].

LeapYear has been tested with SHAP version 0.39.0. Older or newer versions are not guaranteed to work.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict]

	
class leapyear.model.GradientBoostedTreeClassifier(max_depth: int [https://docs.python.org/3/library/functions.html#int], model: WeightedDecisionForest)

	A representation of a trained gradient boosted tree classifier model.

This includes two named fields:

	max_depth - the maximum depth of the individual decision trees.

	model - a model object of class WeightedDecisionForest,
including information about individual decision trees and their weights.

	
max_depth: int [https://docs.python.org/3/library/functions.html#int]

	Alias for field number 0

	
model: leapyear._tidl.protocol.algorithms.decisiontree.WeightedDecisionForest

	Alias for field number 1

	
predict(xs)

	Prediction function of the gradient boosted tree classification model.

For classification problems, returns the most likely class
according to the model.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of most likely outcome labels assigned by the model

	Return type

	np.ndarray

	
predict_proba(xs)

	Prediction probability function of the GBT model.

For each of the data points provided, returns probability that the model assigns
to any given outcome.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of probability scores assigned by the model to input data points
and possible outcomes

	Return type

	np.ndarray

	
predict_log_proba(xs)

	Logarithm of probabilities given by GBT model.

For each of the data points provided, returns natural logarithm of probability
that the model assigns to any given outcome.

	Parameters

	xs (ndarray) – array with input data

	Returns

	array of log-probability scores assigned by the model to input data points
and possible outcomes

	Return type

	np.ndarray

	
to_dict()

	Convert to a dictionary.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
classmethod from_dict(cls, d)

	Convert from a dictionary.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	GradientBoostedTreeClassifier

	
to_shap()

	Convert the trained model to SHAP format.

The converted model can then be used to construct a TreeExplainer object able to generate
Shapley explanations for new records to which the model would be applied to.

Note that:

	model execution and generation of model score explanations is expected to be done in a production setting by an automated system with direct access to record-level information.

	feature explanations for categorical features are currently not supported. Consider one-hot encoding features to get the benefits of explainable model scores.

Examples

>>> import shap
>>> from leapyear import analytics as la
>>> ...
>>> gbt_model = la.gradient_boosted_tree_classifier(xs, y, ds).run()
>>> gbt_explainer = shap.TreeExplainer(gbt_model.to_shap(), X_reference)
>>> gbt_shap_values = gbt_explainer.shap_values(X_to_predict)
>>> ...

In this example:

	The input X_reference used to initialize the explainer object is a pandas.DataFrame containing explanatory variables in the same order as used to train models. It is used to infer what model scores and feature distribution should be considered “typical”.

	The input X_to_predict is a pandas.DataFrame capturing the explanatory variables in the same order as used to train models.

See the SHAP Tree documentation for more information [https://shap.readthedocs.io/en/latest/generated/shap.explainers.Tree.html].

LeapYear has been tested with SHAP version 0.39.0. Older or newer versions are not guaranteed to work.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict]

Clustering Models

	
class leapyear.model.ClusterModel(niters: int [https://docs.python.org/3/library/functions.html#int], nclusters: int [https://docs.python.org/3/library/functions.html#int], model: _CM)

	A representation of the trained K-means clustering model.

This model is generated by running a K-means clustering algorithm
leapyear.analytics.kmeans() and contains cluster centroids (centers).

	
niters: int [https://docs.python.org/3/library/functions.html#int]

	Alias for field number 0

	
nclusters: int [https://docs.python.org/3/library/functions.html#int]

	Alias for field number 1

	
model: ClusterModel

	Alias for field number 2

	
property centroids

	Model centroids.

	Return type

	ndarray[Any [https://docs.python.org/3/library/typing.html#typing.Any], dtype[float64]]

	
predict(xs)

	Prediction function of the clustering model.

Returns the labels for each point in xs.

	Parameters

	xs (ndarray) – A 2-dimensional array of data points.

	Returns

	The associated cluster labels predicted by the the model.

	Return type

	np.ndarray

	
to_dict()

	Convert to a dictionary.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
classmethod from_dict(cls, d)

	Convert from a dictionary.

	Unsupported Backends

	Not supported for the following LeapYear compute backend(s): snowflake.

	Return type

	ClusterModel

Model Evaluation Objects

	
class leapyear.model.ConfusionCurve(model: _CC)

	The Confusion curve object.

This model is generated from running leapyear.analytics.roc() and contains
the metrics of true positive, false positive, true negative and false
negative rates for a sequence of thresholds. Other common metrics are
provided as properties of this model.

	
model: leapyear._tidl.protocol.algorithms.confusioncurve.ConfusionCurve

	Alias for field number 0

	
property df

	Return a dataframe containing most of the analytics.

	Return type

	DataFrame

	
property thresholds

	Thresholds.

Outputs the list of thresholds used for generating confusion curve.

	Return type

	ndarray

	
property tpr

	Compute true positive rates.

Outputs a list of true positive rate (sensitivity, recall) values,
associated with chosen thresholds.

Aliases: tpr (true positive rate), sensitivity, recall

See also

Sensitivity and specificity [https://en.wikipedia.org/wiki/Sensitivity_and_specificity]

	Return type

	ndarray

	
property sensitivity

	Compute true positive rates.

Outputs a list of true positive rate (sensitivity, recall) values,
associated with chosen thresholds.

Aliases: tpr (true positive rate), sensitivity, recall

See also

Sensitivity and specificity [https://en.wikipedia.org/wiki/Sensitivity_and_specificity]

	Return type

	ndarray

	
property recall

	Compute true positive rates.

Outputs a list of true positive rate (sensitivity, recall) values,
associated with chosen thresholds.

Aliases: tpr (true positive rate), sensitivity, recall

See also

Sensitivity and specificity [https://en.wikipedia.org/wiki/Sensitivity_and_specificity]

	Return type

	ndarray

	
property fpr

	Compute false positive rates.

Outputs a list of false positive rate (fallout) values,
associated with chosen thresholds.

Aliases: fpr (false positive rate), fallout

See also

False positive rate [https://en.wikipedia.org/wiki/False_positive_rate]

	Return type

	ndarray

	
property fallout

	Compute false positive rates.

Outputs a list of false positive rate (fallout) values,
associated with chosen thresholds.

Aliases: fpr (false positive rate), fallout

See also

False positive rate [https://en.wikipedia.org/wiki/False_positive_rate]

	Return type

	ndarray

	
property tnr

	Compute true negative rates.

Outputs a list of true negative rate (specificity) values,
associated with chosen thresholds.

Aliases: tnr (true negative rate), specificity

See also

Sensitivity and specificity [https://en.wikipedia.org/wiki/Sensitivity_and_specificity]

	Return type

	ndarray

	
property specificity

	Compute true negative rates.

Outputs a list of true negative rate (specificity) values,
associated with chosen thresholds.

Aliases: tnr (true negative rate), specificity

See also

Sensitivity and specificity [https://en.wikipedia.org/wiki/Sensitivity_and_specificity]

	Return type

	ndarray

	
property fnr

	Compute false negative rates.

Outputs a list of false negative rate (miss rate) values,
associated with chosen thresholds.

Aliases: fnr (false negative rate), missrate

See also

False negative rates [https://en.wikipedia.org/wiki/Type_I_and_type_II_errors]

	Return type

	ndarray

	
property missrate

	Compute false negative rates.

Outputs a list of false negative rate (miss rate) values,
associated with chosen thresholds.

Aliases: fnr (false negative rate), missrate

See also

False negative rates [https://en.wikipedia.org/wiki/Type_I_and_type_II_errors]

	Return type

	ndarray

	
property precision

	Compute precision.

Aliases: precision, ppv (positive predictive value)

See also

Precision and recall [https://en.wikipedia.org/wiki/Precision_and_recall]

	Return type

	ndarray

	
property ppv

	Compute precision.

Aliases: precision, ppv (positive predictive value)

See also

Precision and recall [https://en.wikipedia.org/wiki/Precision_and_recall]

	Return type

	ndarray

	
property npv

	Negative predictive value.

	Return type

	ndarray

	
property accuracy

	Accuracy.

	Return type

	ndarray

	
property f1score

	F1-score.

	Return type

	ndarray

	
property mcc

	Matthews correlation coefficient.

	Return type

	ndarray

	
property auc_roc

	Area under the ROC curve.

Calculates the area under Receiver Operating Characteristic (ROC) curve.

	Return type

	ndarray

	
property auc_pr

	Area under the Precision-Recall curve.

	Return type

	ndarray

	
property gmeasure

	the geometric mean of the precision and recall.

	Type

	G-measure

	Return type

	ndarray

	
fscore(beta)

	Fbeta-score.

The Fbeta-score is the weighted harmonic mean between the precision and
recall.

	Parameters

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Non-negative float for the relative proportion of precision and
recall.

	Returns

	

	Return type

	The Fbeta score

Module leapyear.exceptions

All errors and exceptions.

	
exception leapyear.exceptions.ClientError

	General client errors.

	
static from_response(response, errors=None)

	Create a ClientError from a response.

	Return type

	ClientError

	
class leapyear.exceptions.ErrorInfo(message: str [https://docs.python.org/3/library/stdtypes.html#str], details: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Information about a particular error.

	
message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 0

	
details: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Alias for field number 1

	
exception leapyear.exceptions.APIError(message, *, response=None, errors=None)

	Error from the API Server.

	
exception leapyear.exceptions.DataSetTooSmallException(**kwargs)

	Re-throw of DataSetTooSmall exception.

This exception is triggered and interrupts the computation when the
LeapYear system is unable to guarantee a result that meets the target
accuracy while staying within the maximum Privacy Exposure allowed for
the computation.

The primary cause for this exception is that the data sample being analyzed
is too small, and therefore providing an accurate result would reveal too
much information about a single record.

See also

Built-in safeguards and methods to override exceptions [https://guides.leapyear.io/docs/best-practices-for-maximizing-accuracy#section-built-in-safeguards]

	
exception leapyear.exceptions.DataSetSizeBlockedByPrivacyProfileException(**kwargs)

	Re-throw of DataSetSizeBlockedByProfile exception.

This exception is triggered and interrupts the computation when the
LeapYear system detects that the data set size is smaller than the minimum size
required by the privacy profile.

The primary cause for this exception is that the data sample being analyzed
is too small, and therefore providing an accurate result would reveal too
much information about a single record.

See also

Built-in safeguards and methods to override exceptions [https://guides.leapyear.io/docs/best-practices-for-maximizing-accuracy#section-built-in-safeguards]

	
exception leapyear.exceptions.HighPrivacyExposureException(**kwargs)

	Re-throw of HighPrivacyExposure exception.

This exception occurs when it is estimated that the Privacy Exposure
will reach or exceed the Privacy Exposure Limit for that particular
computation. This could be due to either:

	the data sample is too small and LeapYear estimates that a large
privacy exposure will be incurred, or

	the computation involves a relation that generates a large sensitivity
multiplier.

The precise reason for the exception is not made explicit because of
potential privacy concerns.

See also

Built-in safeguards and methods to override exceptions [https://guides.leapyear.io/docs/best-practices-for-maximizing-accuracy#section-built-in-safeguards]

Limiting the effect of data derivation steps on computation sensitivity [https://guides.leapyear.io/docs/best-practices-for-maximizing-accuracy#section-limiting-the-effect-of-data-derivation-steps-on-computation-sensitivity]

	
exception leapyear.exceptions.SensitivityMultiplierTooLargeException(logbase10_sensitivity_multiplier, **kwargs)

	Re-throw of SensitivityMultiplierTooLarge exception.

This exception is triggered and interrupts a computation when the LeapYear
system estimates that the computation:

	will reach or exceed the maximum Privacy Exposure allowed for the
computation; AND

	is based on a derived dataset that generates an excessively large
sensitivity multiplier.

See also

Built-in safeguards and methods to override exceptions [https://guides.leapyear.io/docs/best-practices-for-maximizing-accuracy#section-built-in-safeguards]

Limiting the effect of data derivation steps on computation sensitivity [https://guides.leapyear.io/docs/best-practices-for-maximizing-accuracy#section-limiting-the-effect-of-data-derivation-steps-on-computation-sensitivity]

	
exception leapyear.exceptions.InvalidURL

	URL can not be parsed.

	
exception leapyear.exceptions.TLSError

	Errors from TLS.

	
exception leapyear.exceptions.InvalidJson

	Json was not constructed correctly.

	
exception leapyear.exceptions.ConnectionError

	Error establishing connection.

	
exception leapyear.exceptions.ServerVersionMismatch(server_version=None)

	Server and client have different versions.

	
exception leapyear.exceptions.TokenExpiredError

	Authentication token was expired.

	
exception leapyear.exceptions.AsyncTimeoutError

	Async job timed out.

	
exception leapyear.exceptions.AsyncCancelledError

	Async job was cancelled.

	
exception leapyear.exceptions.GroupbyAggTooManyKeysError

	Too many keys for a GroupbyAgg operation.

	
exception leapyear.exceptions.LoadUnsupportedModelException

	This exception is raised when trying to load or save an unsupported type of model.

	
exception leapyear.exceptions.LoadModelMismatchException(actual_type, expected_type)

	This exception is raised when there is a mismatch with loaded and expected models.

	
exception leapyear.exceptions.LoadModelVersionException(model, name_file)

	This exception is raised when loading a module with a version not supported.

	
exception leapyear.exceptions.SaveUnsupportedModelException

	This exception is raised when trying to save an unsupported model.

	
exception leapyear.exceptions.PublicKeyCredentialsError(message)

	Exceptions originating from problems with public key auth credentials.

Module leapyear.ext

Quick client

	
leapyear.ext.user.client(config_file=PosixPath('~/.leapyear_client.ini'), debug=False, **kwargs)

	Use environment variables or a configuration file to quickly connect to LeapYear.

This function uses values found in environment variables, a config file, keyword arguments and
built-in defaults to try to establish a connection to a LeapYear server. In order of
precedence, values are taken from the kwargs of this function, then environment
variable, the config file, and finally, default values, if they exist.

By default, the config file is ~/.leapyear_client.ini. The config file requires a
[leapyear.io] section where values can be found.

The following table contains the names of the values when specified by particular methods,
and the default values if no other value can be determined.

	environment variable

	ini key/keyword argument

	default value

	LY_URL

	url

	'http://localhost:4401'

	LY_USERNAME

	username

	None

	LY_PASSWORD

	password

	None

	LY_DEFAULT_ANALYSIS_CACHING

	default_analysis_caching

	True

	LY_DEFAULT_ALLOW_MAX_BUDGET_ALLOCATION

	default_allow_max_budget_allocation

	True

	LY_LOGGING_LEVEL

	logging_level

	'NOTSET'

At least username and password must be supplied to establish a connection to
the LeapYear server.

logging_level should be the name of a logging level in logging [https://docs.python.org/3/library/logging.html#module-logging].

Example

Contents of ~/.leapyear_client.ini are

[leapyear.io]
username = alice
password = lihjAgsd324$
url = http://api.leapyear.domain.com:4401

Next, we execute a basic test with debug=True to see the values that are passed to
the Client constructor.

>>> from leapyear.ext.user import client
>>> import logging
>>> logging.basicConfig()
>>> c = client(debug=True)
DEBUG:leapyear.ext.user:Found config file with [leapyear.io] section.
DEBUG:leapyear.ext.user:Resolved the following values:
DEBUG:leapyear.ext.user: url <- <str: 'http://api.leapyear.domain.com:4401'>
DEBUG:leapyear.ext.user: username <- <str: 'alice'>
DEBUG:leapyear.ext.user: password <- <str: 'lihjAgsd324$'>
DEBUG:leapyear.ext.user: default_analysis_caching <- <bool: True>
DEBUG:leapyear.ext.user: default_allow_max_budget_allocation <- <bool: True>
DEBUG:leapyear.ext.user: logging_level <- <int: 0>
>>> print(c.connected)
True
>>> c.close()

	Parameters

	
	config_file (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – Specify an alternate config file.

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to enable extra debugging information.
basicConfig() [https://docs.python.org/3/library/logging.html#logging.basicConfig] may be useful to run so that debugging
information will print to stdout.

	Return type

	Client

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 leapyear	

 	
 	
 leapyear.admin	

 	
 	
 leapyear.admin.grants	

 	
 	
 leapyear.analytics	

 	
 	
 leapyear.analytics.classes	

 	
 	
 leapyear.client	

 	
 	
 leapyear.dataset	

 	
 	
 leapyear.exceptions	

 	
 	
 leapyear.feature	

 	
 	
 leapyear.functions	

 	
 	
 leapyear.functions.math	

 	
 	
 leapyear.functions.non_aggregate	

 	
 	
 leapyear.functions.string	

 	
 	
 leapyear.functions.time	

 	
 	
 leapyear.functions.window	

 	
 	
 leapyear.jobs	

 	
 	
 leapyear.ml_import_export	

 	
 	
 leapyear.model	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__init__() (leapyear.admin.Table method)

 	(leapyear.client.Client method)

 	
 	__new__() (leapyear.admin.ColumnDefinition method)

A

 	
 	abs() (in module leapyear.functions.non_aggregate)

 	access (leapyear.admin.grants.DatabaseAccess attribute)

 	accuracy() (leapyear.model.ConfusionCurve property)

 	acos() (in module leapyear.functions.math)

 	add_data_slice() (leapyear.admin.Table method)

 	add_data_slice_async() (leapyear.admin.Table method)

 	add_months() (in module leapyear.functions.time)

 	ADMINISTER_DATABASE (leapyear.admin.DatabaseAccessType attribute)

 	affinity (leapyear.model.GLM attribute)

 	agg() (leapyear.dataset.GroupedData method)

 	aggregate_type (leapyear.analytics.classes.GroupbyAgg attribute)

 	aggs (leapyear.analytics.classes.GroupbyAgg attribute)

 	alias() (leapyear.dataset.Attribute method)

 	all() (in module leapyear.functions.non_aggregate)

 	(leapyear.admin.Database class method)

 	(leapyear.admin.PrivacyProfile class method)

 	(leapyear.admin.User class method)

 	all_access_on_database() (in module leapyear.admin.grants)

 	all_access_on_table() (in module leapyear.admin.grants)

 	all_database_accesses_for_subject() (in module leapyear.admin.grants)

 	Analysis (class in leapyear.analytics.classes)

 	and_() (in module leapyear.functions.window)

 	any() (in module leapyear.functions.non_aggregate)

 	APIError

 	approx_count_distinct() (in module leapyear.functions.window)

 	as_factor() (leapyear.dataset.Attribute method)

 	
 	as_real() (leapyear.dataset.Attribute method)

 	asc() (leapyear.dataset.Attribute method)

 	asc_nulls_first() (leapyear.dataset.Attribute method)

 	asc_nulls_last() (leapyear.dataset.Attribute method)

 	ascii() (in module leapyear.functions.string)

 	asin() (in module leapyear.functions.math)

 	AsyncAnalysis (class in leapyear.analytics.classes)

 	AsyncCancelledError

 	AsyncJob (class in leapyear.jobs)

 	AsyncJobState (class in leapyear.jobs)

 	AsyncJobStateCancelled (leapyear.jobs.AsyncJobState attribute)

 	AsyncJobStateFailed (leapyear.jobs.AsyncJobState attribute)

 	AsyncJobStateFinished (leapyear.jobs.AsyncJobState attribute)

 	AsyncJobStateRunning (leapyear.jobs.AsyncJobState attribute)

 	AsyncJobStatus (class in leapyear.jobs)

 	AsyncTimeoutError

 	atan() (in module leapyear.functions.math)

 	attr_in() (in module leapyear.functions.non_aggregate)

 	attr_not_in() (in module leapyear.functions.non_aggregate)

 	Attribute (class in leapyear.dataset)

 	AttributeLike() (in module leapyear.dataset.attribute)

 	attributes() (leapyear.dataset.DataSet property)

 	AttributeType (class in leapyear.dataset)

 	auc_pr() (leapyear.model.ConfusionCurve property)

 	auc_roc() (leapyear.model.ConfusionCurve property)

 	avg() (in module leapyear.functions.window)

B

 	
 	basic_linreg() (in module leapyear.analytics)

 	BOOL (leapyear.admin.ColumnType attribute)

 	bounds (leapyear.admin.ColumnDefinition attribute)

 	bounds() (leapyear.admin.TableColumn property)

 	
 	BoundsAbsScaler (class in leapyear.feature)

 	BoundsAnalysis (class in leapyear.analytics.classes)

 	BoundsScaler (class in leapyear.feature)

 	Bucketizer (class in leapyear.feature)

C

 	
 	cache() (leapyear.dataset.DataSet method)

 	cancel() (leapyear.analytics.classes.AsyncAnalysis method)

 	cbrt() (in module leapyear.functions.math)

 	ceil() (in module leapyear.functions.math)

 	(leapyear.dataset.Attribute method)

 	centroids() (leapyear.model.ClusterModel property)

 	check() (leapyear.analytics.classes.Analysis method)

 	check_status() (leapyear.analytics.classes.AsyncAnalysis method)

 	clear_all_caches() (leapyear.client.Client method)

 	clear_analysis_cache() (leapyear.client.Client method)

 	clear_cache() (leapyear.dataset.Attribute class method)

 	Client (class in leapyear.client)

 	client() (in module leapyear.ext.user)

 	ClientError

 	close() (leapyear.client.Client method)

 	ClusteringAnalysis (class in leapyear.analytics.classes)

 	ClusterModel (class in leapyear.model)

 	coalesce() (leapyear.dataset.Attribute method)

 	coefficients() (leapyear.model.GLM property)

 	col() (in module leapyear.functions.non_aggregate)

 	column() (in module leapyear.functions.non_aggregate)

 	ColumnAccessType (class in leapyear.admin)

 	ColumnBounds (in module leapyear.admin)

 	ColumnDefinition (class in leapyear.admin)

 	columns (leapyear.admin.grants.TableAccess attribute)

 	columns() (leapyear.admin.Table property)

 	ColumnType (class in leapyear.admin)

 	COMPARE (leapyear.admin.ColumnAccessType attribute)

 	COMPUTE (leapyear.admin.ColumnAccessType attribute)

 	concat() (in module leapyear.functions.string)

 	ConfusionCurve (class in leapyear.model)

 	ConfusionModelAnalysis (class in leapyear.analytics.classes)

 	
 	connected() (leapyear.client.Client property)

 	ConnectionError

 	corr() (in module leapyear.functions.window)

 	correlation_matrix() (in module leapyear.analytics)

 	cos() (in module leapyear.functions.math)

 	cosh() (in module leapyear.functions.math)

 	count() (in module leapyear.analytics)

 	(in module leapyear.functions.window)

 	count_analysis_cache() (leapyear.client.Client method)

 	count_distinct() (in module leapyear.analytics)

 	count_distinct_rows() (in module leapyear.analytics)

 	count_rows() (in module leapyear.analytics)

 	CountAnalysis (class in leapyear.analytics.classes)

 	CountAnalysisWithRI (class in leapyear.analytics.classes)

 	covar_pop() (in module leapyear.functions.window)

 	covar_samp() (in module leapyear.functions.window)

 	covariance_matrix() (in module leapyear.analytics)

 	create() (leapyear.admin.Database method)

 	(leapyear.admin.PrivacyProfile method)

 	(leapyear.admin.Table method)

 	(leapyear.admin.User method)

 	(leapyear.admin.View method)

 	(leapyear.client.Client method)

 	create_async() (leapyear.admin.Table method)

 	(leapyear.admin.View method)

 	(leapyear.client.Client method)

 	cross_val_score_linreg() (in module leapyear.analytics)

 	cross_val_score_logreg() (in module leapyear.analytics)

 	cross_val_score_random_forest() (in module leapyear.analytics)

 	cross_val_score_regression_trees() (in module leapyear.analytics)

 	CrossValidationAnalysis (class in leapyear.analytics.classes)

 	current_user() (leapyear.client.Client property)

D

 	
 	Database (class in leapyear.admin)

 	database (leapyear.admin.grants.DatabaseAccess attribute)

 	database() (leapyear.admin.Table property)

 	(leapyear.admin.TableColumn property)

 	(leapyear.admin.View property)

 	DatabaseAccess (class in leapyear.admin.grants)

 	DatabaseAccessType (class in leapyear.admin)

 	databases() (leapyear.client.Client property)

 	DataSet (class in leapyear.dataset)

 	DataSetSizeBlockedByPrivacyProfileException

 	DataSetTooSmallException

 	DATE (leapyear.admin.ColumnType attribute)

 	date_add() (in module leapyear.functions.time)

 	date_sub() (in module leapyear.functions.time)

 	datediff() (in module leapyear.functions.time)

 	DATETIME (leapyear.admin.ColumnType attribute)

 	day() (leapyear.dataset.Attribute property)

 	dayofmonth() (in module leapyear.functions.time)

 	dayofweek() (in module leapyear.functions.time)

 	dayofyear() (in module leapyear.functions.time)

 	decision_function() (leapyear.model.GLM method)

 	decode() (leapyear.dataset.Attribute method)

 	degrees() (in module leapyear.functions.math)

 	dematerialize() (leapyear.admin.View method)

 	
 	desc() (leapyear.dataset.Attribute method)

 	desc_nulls_first() (leapyear.dataset.Attribute method)

 	desc_nulls_last() (leapyear.dataset.Attribute method)

 	describe() (in module leapyear.analytics)

 	DescribeAnalysis (class in leapyear.analytics.classes)

 	description (leapyear.admin.ColumnDefinition attribute)

 	description() (leapyear.admin.Database property)

 	(leapyear.admin.PrivacyProfile property)

 	(leapyear.admin.Table property)

 	(leapyear.admin.TableColumn property)

 	(leapyear.admin.View property)

 	details (leapyear.exceptions.ErrorInfo attribute)

 	df() (leapyear.model.ConfusionCurve property)

 	difference() (leapyear.dataset.DataSet method)

 	distinct() (leapyear.dataset.DataSet method)

 	domain() (leapyear.dataset.AttributeType property)

 	drop() (leapyear.admin.Database method)

 	(leapyear.admin.Table method)

 	(leapyear.admin.View method)

 	(leapyear.client.Client method)

 	(leapyear.dataset.DataSet method)

 	drop_attribute() (leapyear.dataset.DataSet method)

 	drop_attributes() (leapyear.dataset.DataSet method)

 	drop_duplicates() (leapyear.dataset.DataSet method)

E

 	
 	elapsed_time() (leapyear.jobs.AsyncJobStatus property)

 	enabled() (leapyear.admin.User property)

 	end_time (leapyear.jobs.AsyncJobStatus attribute)

 	erf() (in module leapyear.functions.math)

 	erfc() (in module leapyear.functions.math)

 	ErrorInfo (class in leapyear.exceptions)

 	eval_gbt_classifier() (in module leapyear.analytics)

 	eval_kmeans() (in module leapyear.analytics)

 	eval_linreg() (in module leapyear.analytics)

 	eval_logreg() (in module leapyear.analytics)

 	
 	eval_random_forest() (in module leapyear.analytics)

 	eval_regression_trees() (in module leapyear.analytics)

 	example_rows() (leapyear.dataset.DataSet method)

 	example_rows_pandas() (leapyear.dataset.DataSet method)

 	except_() (leapyear.dataset.DataSet method)

 	exp() (in module leapyear.functions.math)

 	(leapyear.dataset.Attribute method)

 	expm1() (in module leapyear.functions.math)

 	(leapyear.dataset.Attribute method)

 	expression() (leapyear.dataset.Attribute property)

F

 	
 	f1score() (leapyear.model.ConfusionCurve property)

 	FACTOR (leapyear.admin.ColumnType attribute)

 	FailAnalysis (class in leapyear.analytics.classes)

 	fallout() (leapyear.model.ConfusionCurve property)

 	feature_importance() (leapyear.model.RandomForestClassifier property)

 	fill() (leapyear.dataset.DataSet method)

 	first() (in module leapyear.functions.window)

 	fit_transform() (leapyear.feature.Bucketizer method)

 	(leapyear.feature.Normalizer method)

 	(leapyear.feature.Winsorizer method)

 	floor() (in module leapyear.functions.math)

 	(leapyear.dataset.Attribute method)

 	fnr() (leapyear.model.ConfusionCurve property)

 	
 	ForestModelClassifierAnalysis (class in leapyear.analytics.classes)

 	ForestModelRegressionAnalysis (class in leapyear.analytics.classes)

 	fpr() (leapyear.model.ConfusionCurve property)

 	FractionalPrivacyExposure (class in leapyear.analytics.classes)

 	from_dict() (leapyear.model.ClusterModel class method)

 	(leapyear.model.GLM class method)

 	(leapyear.model.GradientBoostedTreeClassifier class method)

 	(leapyear.model.RandomForestClassifier class method)

 	(leapyear.model.RandomForestRegressor class method)

 	from_response() (leapyear.exceptions.ClientError static method)

 	from_table() (leapyear.dataset.DataSet class method)

 	from_view() (leapyear.dataset.DataSet class method)

 	fscore() (leapyear.model.ConfusionCurve method)

 	FULL_ACCESS (leapyear.admin.ColumnAccessType attribute)

G

 	
 	generalized_linreg() (in module leapyear.analytics)

 	generalized_logreg() (in module leapyear.analytics)

 	GenLinAnalysis (class in leapyear.analytics.classes)

 	get_access() (leapyear.admin.Database method)

 	(leapyear.admin.TableColumn method)

 	get_attribute() (leapyear.dataset.DataSet method)

 	get_privacy_limit() (leapyear.admin.Database method)

 	(leapyear.admin.Table method)

 	get_user_privacy_spent() (leapyear.admin.Table method)

 	GLM (class in leapyear.model)

 	gmeasure() (leapyear.model.ConfusionCurve property)

 	gradient_boosted_tree_classifier() (in module leapyear.analytics)

 	
 	GradientBoostedTreeClassifier (class in leapyear.model)

 	GradientBoostedTreeClassifierModelAnalysis (class in leapyear.analytics.classes)

 	greatest() (in module leapyear.functions.non_aggregate)

 	(leapyear.dataset.Attribute method)

 	group_by() (leapyear.dataset.DataSet method)

 	groupby_agg_view() (in module leapyear.analytics)

 	GroupbyAgg (class in leapyear.analytics.classes)

 	GroupbyAggAnalysis (class in leapyear.analytics.classes)

 	GroupbyAggTooManyKeysError

 	GroupedData (class in leapyear.dataset)

 	groups() (leapyear.admin.User property)

 	(leapyear.client.Client property)

H

 	
 	head() (leapyear.dataset.DataSet method)

 	head_pandas() (leapyear.dataset.DataSet method)

 	height (leapyear.model.RandomForestClassifier attribute)

 	(leapyear.model.RandomForestRegressor attribute)

 	hidden() (leapyear.admin.PrivacyProfile property)

 	HighPrivacyExposureException

 	histogram() (in module leapyear.analytics)

 	histogram2d() (in module leapyear.analytics)

 	Histogram2DAnalysis (class in leapyear.analytics.classes)

 	
 	HistogramAnalysis (class in leapyear.analytics.classes)

 	hour() (in module leapyear.functions.time)

 	(leapyear.dataset.Attribute property)

 	hyperopt_linreg() (in module leapyear.analytics)

 	hyperopt_logreg() (in module leapyear.analytics)

 	hyperopt_regression_trees() (in module leapyear.analytics)

 	hyperopt_rf() (in module leapyear.analytics)

 	HyperOptAnalysis (class in leapyear.analytics.classes)

 	hypot() (in module leapyear.functions.math)

I

 	
 	ID (leapyear.admin.ColumnType attribute)

 	id() (leapyear.admin.Database property)

 	(leapyear.admin.PrivacyProfile property)

 	(leapyear.admin.Table property)

 	(leapyear.admin.TableColumn property)

 	(leapyear.admin.User property)

 	ignore_computation_cache() (in module leapyear.analytics)

 	infer_bounds (leapyear.admin.ColumnDefinition attribute)

 	instr() (in module leapyear.functions.string)

 	INT (leapyear.admin.ColumnType attribute)

 	intercept() (leapyear.model.GLM property)

 	
 	intercepts() (leapyear.model.GLM property)

 	intersect() (leapyear.dataset.DataSet method)

 	InvalidJson

 	InvalidURL

 	inverf() (in module leapyear.functions.math)

 	inverfc() (in module leapyear.functions.math)

 	iqr() (in module leapyear.analytics)

 	is_in() (leapyear.dataset.Attribute method)

 	is_not() (leapyear.dataset.Attribute method)

 	is_root() (leapyear.admin.User property)

 	isnull() (in module leapyear.functions.non_aggregate)

 	(leapyear.dataset.Attribute method)

J

 	
 	jobs() (leapyear.client.Client property)

 	join() (leapyear.dataset.DataSet method)

 	
 	join_data() (leapyear.dataset.DataSet method)

 	join_pandas() (leapyear.dataset.DataSet method)

K

 	
 	key_columns (leapyear.analytics.classes.GroupbyAgg attribute)

 	kfold() (leapyear.dataset.DataSet method)

 	
 	kmeans() (in module leapyear.analytics)

 	kurtosis() (in module leapyear.analytics)

 	(in module leapyear.functions.window)

L

 	
 	l1reg (leapyear.model.GLM attribute)

 	l2reg (leapyear.model.GLM attribute)

 	lag() (in module leapyear.functions.window)

 	last() (in module leapyear.functions.window)

 	last_day() (in module leapyear.functions.time)

 	lead() (in module leapyear.functions.window)

 	
 leapyear.admin

 	module

 	
 leapyear.admin.grants

 	module

 	
 leapyear.analytics

 	module

 	
 leapyear.analytics.classes

 	module

 	
 leapyear.client

 	module

 	
 leapyear.dataset

 	module

 	
 leapyear.exceptions

 	module

 	
 leapyear.feature

 	module

 	
 leapyear.functions

 	module

 	
 leapyear.functions.math

 	module

 	
 leapyear.functions.non_aggregate

 	module

 	
 leapyear.functions.string

 	module

 	
 leapyear.functions.time

 	module

 	
 leapyear.functions.window

 	module

 	
 leapyear.jobs

 	module

 	
 	
 leapyear.ml_import_export

 	module

 	
 leapyear.model

 	module

 	least() (in module leapyear.functions.non_aggregate)

 	(leapyear.dataset.Attribute method)

 	length() (in module leapyear.functions.string)

 	levenshtein() (in module leapyear.functions.string)

 	lex_gt() (in module leapyear.functions.string)

 	lex_gte() (in module leapyear.functions.string)

 	lex_lt() (in module leapyear.functions.string)

 	lex_lte() (in module leapyear.functions.string)

 	limit() (leapyear.dataset.DataSet method)

 	lit() (in module leapyear.functions.non_aggregate)

 	load() (in module leapyear.ml_import_export)

 	(leapyear.admin.Database method)

 	(leapyear.admin.PrivacyProfile method)

 	(leapyear.admin.Table method)

 	(leapyear.admin.User method)

 	(leapyear.admin.View method)

 	LoadModelMismatchException

 	LoadModelVersionException

 	LoadUnsupportedModelException

 	locate() (in module leapyear.functions.string)

 	log() (in module leapyear.functions.math)

 	(leapyear.dataset.Attribute method)

 	log10() (in module leapyear.functions.math)

 	log1p() (in module leapyear.functions.math)

 	(leapyear.dataset.Attribute method)

 	log2() (in module leapyear.functions.math)

 	logger() (leapyear.client.Client property)

 	logout() (leapyear.client.Client method)

 	logreg() (in module leapyear.analytics)

 	lower() (in module leapyear.functions.string)

 	lpad() (in module leapyear.functions.string)

 	ltrim() (in module leapyear.functions.string)

M

 	
 	map_attribute() (leapyear.dataset.DataSet method)

 	map_attributes() (leapyear.dataset.DataSet method)

 	MatrixAnalysis (class in leapyear.analytics.classes)

 	max() (in module leapyear.analytics)

 	(in module leapyear.functions.window)

 	max_depth (leapyear.model.GradientBoostedTreeClassifier attribute)

 	MaxAbsScaler (class in leapyear.feature)

 	maximum_privacy_exposure() (leapyear.analytics.classes.Analysis method)

 	mcc() (leapyear.model.ConfusionCurve property)

 	mean() (in module leapyear.analytics)

 	(in module leapyear.functions.window)

 	median() (in module leapyear.analytics)

 	message (leapyear.exceptions.ErrorInfo attribute)

 	microsecond() (leapyear.dataset.Attribute property)

 	min() (in module leapyear.analytics)

 	(in module leapyear.functions.window)

 	MinMaxScaler (class in leapyear.feature)

 	minute() (in module leapyear.functions.time)

 	(leapyear.dataset.Attribute property)

 	missrate() (leapyear.model.ConfusionCurve property)

 	model (leapyear.model.ClusterModel attribute)

 	(leapyear.model.ConfusionCurve attribute)

 	(leapyear.model.GLM attribute)

 	(leapyear.model.GradientBoostedTreeClassifier attribute)

 	(leapyear.model.RandomForestClassifier attribute)

 	(leapyear.model.RandomForestRegressor attribute)

 	
 	model_type() (leapyear.model.GLM property)

 	
 module

 	leapyear.admin

 	leapyear.admin.grants

 	leapyear.analytics

 	leapyear.analytics.classes

 	leapyear.client

 	leapyear.dataset

 	leapyear.exceptions

 	leapyear.feature

 	leapyear.functions

 	leapyear.functions.math

 	leapyear.functions.non_aggregate

 	leapyear.functions.string

 	leapyear.functions.time

 	leapyear.functions.window

 	leapyear.jobs

 	leapyear.ml_import_export

 	leapyear.model

 	month() (in module leapyear.functions.time)

 	(leapyear.dataset.Attribute property)

 	months_between() (in module leapyear.functions.time)

N

 	
 	name (leapyear.admin.ColumnDefinition attribute)

 	name() (leapyear.admin.Database property)

 	(leapyear.admin.Table property)

 	(leapyear.admin.User property)

 	(leapyear.admin.View property)

 	(leapyear.dataset.Attribute property)

 	(leapyear.dataset.AttributeType property)

 	nclusters (leapyear.model.ClusterModel attribute)

 	negate() (in module leapyear.functions.non_aggregate)

 	next_day() (in module leapyear.functions.time)

 	niters (leapyear.model.ClusterModel attribute)

 	
 	NO_ACCESS (leapyear.admin.ColumnAccessType attribute)

 	NO_ACCESS_TO_DB (leapyear.admin.DatabaseAccessType attribute)

 	Normalizer (class in leapyear.feature)

 	not_() (in module leapyear.functions.non_aggregate)

 	notnull() (leapyear.dataset.Attribute method)

 	npv() (leapyear.model.ConfusionCurve property)

 	ntrees (leapyear.model.RandomForestClassifier attribute)

 	(leapyear.model.RandomForestRegressor attribute)

 	nullable (leapyear.admin.ColumnDefinition attribute)

 	nullable() (leapyear.admin.TableColumn property)

 	(leapyear.dataset.AttributeType property)

O

 	
 	OneHotEncoder (class in leapyear.feature)

 	or_() (in module leapyear.functions.window)

 	
 	order_by() (leapyear.dataset.DataSet method)

 	(leapyear.dataset.Window class method)

 	ordering() (leapyear.dataset.Attribute property)

P

 	
 	params() (leapyear.admin.PrivacyProfile property)

 	parse_clamped_time() (in module leapyear.functions.time)

 	partition_by() (leapyear.dataset.Window class method)

 	pca() (in module leapyear.analytics)

 	pow() (in module leapyear.functions.math)

 	ppv() (leapyear.model.ConfusionCurve property)

 	precise_computations() (in module leapyear.analytics)

 	precision() (leapyear.model.ConfusionCurve property)

 	predict() (leapyear.dataset.DataSet method)

 	(leapyear.model.ClusterModel method)

 	(leapyear.model.GLM method)

 	(leapyear.model.GradientBoostedTreeClassifier method)

 	(leapyear.model.RandomForestClassifier method)

 	(leapyear.model.RandomForestRegressor method)

 	predict_log_proba() (leapyear.model.GLM method)

 	(leapyear.model.GradientBoostedTreeClassifier method)

 	(leapyear.model.RandomForestClassifier method)

 	
 	predict_proba() (leapyear.dataset.DataSet method)

 	(leapyear.model.GLM method)

 	(leapyear.model.GradientBoostedTreeClassifier method)

 	(leapyear.model.RandomForestClassifier method)

 	prepare_join() (leapyear.dataset.DataSet method)

 	privacy_params() (leapyear.admin.Database property)

 	privacy_profile() (leapyear.admin.Database property)

 	privacy_profiles() (leapyear.client.Client property)

 	privacy_spent() (leapyear.admin.Table property)

 	PrivacyProfile (class in leapyear.admin)

 	process_result() (leapyear.analytics.classes.AsyncAnalysis method)

 	project() (leapyear.dataset.DataSet method)

 	public() (leapyear.admin.Table property)

 	PublicKeyCredentialsError

Q

 	
 	quantile() (in module leapyear.analytics)

 	
 	quarter() (in module leapyear.functions.time)

R

 	
 	radians() (in module leapyear.functions.math)

 	random_forest() (in module leapyear.analytics)

 	RandomForestClassifier (class in leapyear.model)

 	RandomForestRegressor (class in leapyear.model)

 	RandomizationInterval (class in leapyear.analytics.classes)

 	REAL (leapyear.admin.ColumnType attribute)

 	recall() (leapyear.model.ConfusionCurve property)

 	recent_finished_jobs() (leapyear.client.Client property)

 	regex_extract() (in module leapyear.functions.string)

 	regex_replace() (in module leapyear.functions.string)

 	regression_trees() (in module leapyear.analytics)

 	relation() (leapyear.dataset.Attribute property)

 	(leapyear.dataset.DataSet property)

 	remove_accents() (in module leapyear.functions.string)

 	
 	repartition() (leapyear.dataset.DataSet method)

 	repeat() (in module leapyear.functions.string)

 	replace() (leapyear.dataset.Attribute method)

 	(leapyear.dataset.DataSet method)

 	result (leapyear.jobs.AsyncJobStatus attribute)

 	reverse() (in module leapyear.functions.string)

 	roc() (in module leapyear.analytics)

 	round() (in module leapyear.functions.math)

 	rows() (leapyear.dataset.DataSet method)

 	rows_async() (leapyear.dataset.DataSet method)

 	rows_between() (leapyear.dataset.Window class method)

 	rows_pandas() (leapyear.dataset.DataSet method)

 	rpad() (in module leapyear.functions.string)

 	rtrim() (in module leapyear.functions.string)

 	run() (leapyear.analytics.classes.Analysis method)

S

 	
 	sample() (leapyear.dataset.DataSet method)

 	save() (in module leapyear.ml_import_export)

 	SaveUnsupportedModelException

 	ScalarAnalysis (class in leapyear.analytics.classes)

 	ScalarAnalysisWithRI (class in leapyear.analytics.classes)

 	ScalarFromHistogramAnalysis (class in leapyear.analytics.classes)

 	ScaleTransformModel (class in leapyear.feature)

 	schema() (leapyear.dataset.DataSet property)

 	second() (in module leapyear.functions.time)

 	(leapyear.dataset.Attribute property)

 	select() (leapyear.dataset.DataSet method)

 	select_as() (leapyear.dataset.DataSet method)

 	sensitivity() (leapyear.model.ConfusionCurve property)

 	SensitivityMultiplierTooLargeException

 	serialize() (leapyear.analytics.classes.AsyncAnalysis method)

 	ServerVersionMismatch

 	set_access() (leapyear.admin.Database method)

 	(leapyear.admin.TableColumn method)

 	set_all_columns_access() (leapyear.admin.Table method)

 	set_description() (leapyear.admin.TableColumn method)

 	set_privacy_limit() (leapyear.admin.Database method)

 	(leapyear.admin.Table method)

 	set_privacy_profile() (leapyear.admin.Database method)

 	set_user_privacy_limit() (leapyear.admin.Table method)

 	SHOW_DATABASE (leapyear.admin.DatabaseAccessType attribute)

 	sigmoid() (in module leapyear.functions.math)

 	(leapyear.dataset.Attribute method)

 	sign() (leapyear.dataset.Attribute method)

 	signum() (in module leapyear.functions.math)

 	sin() (in module leapyear.functions.math)

 	sinh() (in module leapyear.functions.math)

 	
 	skewness() (in module leapyear.analytics)

 	(in module leapyear.functions.window)

 	SleepAnalysis (class in leapyear.analytics.classes)

 	slices() (leapyear.admin.Table property)

 	sortWithinPartitions() (leapyear.dataset.DataSet method)

 	soundex() (in module leapyear.functions.string)

 	specificity() (leapyear.model.ConfusionCurve property)

 	split() (leapyear.dataset.DataSet method)

 	splits() (leapyear.dataset.DataSet method)

 	sqrt() (in module leapyear.functions.math)

 	(leapyear.dataset.Attribute method)

 	StandardScaler (class in leapyear.feature)

 	start_time (leapyear.jobs.AsyncJobStatus attribute)

 	status (leapyear.jobs.AsyncJobStatus attribute)

 	status() (leapyear.admin.Table property)

 	(leapyear.client.Client property)

 	status_with_error() (leapyear.admin.Table property)

 	stddev() (in module leapyear.functions.window)

 	stddev_pop() (in module leapyear.functions.window)

 	stddev_samp() (in module leapyear.functions.window)

 	stratified_kfold() (leapyear.dataset.DataSet method)

 	stratified_split() (leapyear.dataset.DataSet method)

 	stratified_splits() (leapyear.dataset.DataSet method)

 	subj_id() (leapyear.admin.User property)

 	subject (leapyear.admin.grants.DatabaseAccess attribute)

 	(leapyear.admin.grants.TableAccess attribute)

 	substring() (in module leapyear.functions.string)

 	substring_index() (in module leapyear.functions.string)

 	sum() (in module leapyear.analytics)

 	(in module leapyear.functions.window)

 	symmetric_difference() (leapyear.dataset.DataSet method)

T

 	
 	Table (class in leapyear.admin)

 	table (leapyear.admin.grants.TableAccess attribute)

 	table() (leapyear.admin.TableColumn property)

 	TableAccess (class in leapyear.admin.grants)

 	TableColumn (class in leapyear.admin)

 	tables() (leapyear.admin.Database property)

 	tan() (in module leapyear.functions.math)

 	tanh() (in module leapyear.functions.math)

 	TEXT (leapyear.admin.ColumnType attribute)

 	text_to_bool() (leapyear.dataset.Attribute method)

 	text_to_factor() (leapyear.dataset.Attribute method)

 	text_to_int() (leapyear.dataset.Attribute method)

 	text_to_real() (leapyear.dataset.Attribute method)

 	thresholds() (leapyear.model.ConfusionCurve property)

 	TLSError

 	tnr() (leapyear.model.ConfusionCurve property)

 	to_dataframe() (leapyear.analytics.classes.GroupbyAgg method)

 	to_date() (in module leapyear.functions.time)

 	to_datetime() (in module leapyear.functions.time)

 	
 	to_dict() (leapyear.model.ClusterModel method)

 	(leapyear.model.GLM method)

 	(leapyear.model.GradientBoostedTreeClassifier method)

 	(leapyear.model.RandomForestClassifier method)

 	(leapyear.model.RandomForestRegressor method)

 	to_shap() (leapyear.model.GLM method)

 	(leapyear.model.GradientBoostedTreeClassifier method)

 	(leapyear.model.RandomForestClassifier method)

 	(leapyear.model.RandomForestRegressor method)

 	to_text() (in module leapyear.functions.non_aggregate)

 	TokenExpiredError

 	tpr() (leapyear.model.ConfusionCurve property)

 	transform() (leapyear.dataset.DataSet method)

 	translate() (in module leapyear.functions.string)

 	trim() (in module leapyear.functions.string)

 	trunc() (in module leapyear.functions.time)

 	type (leapyear.admin.ColumnDefinition attribute)

 	type() (leapyear.admin.TableColumn property)

 	(leapyear.dataset.Attribute property)

 	TypeAnalysis (class in leapyear.analytics.classes)

U

 	
 	union() (leapyear.dataset.DataSet method)

 	unpersist() (leapyear.dataset.DataSet method)

 	unpersist_all_relations() (leapyear.client.Client method)

 	unpersist_join_cache() (leapyear.dataset.DataSet method)

 	update() (leapyear.admin.PrivacyProfile method)

 	(leapyear.admin.TableColumn method)

 	(leapyear.admin.User method)

 	(leapyear.client.Client method)

 	
 	upper() (in module leapyear.functions.string)

 	url() (leapyear.client.Client property)

 	User (class in leapyear.admin)

 	username() (leapyear.admin.User property)

 	(leapyear.client.Client property)

 	users() (leapyear.client.Client property)

V

 	
 	variance() (in module leapyear.analytics)

 	(in module leapyear.functions.window)

 	variance_pop() (in module leapyear.functions.window)

 	
 	variance_samp() (in module leapyear.functions.window)

 	verified() (leapyear.admin.PrivacyProfile property)

 	View (class in leapyear.admin)

 	views() (leapyear.admin.Database property)

W

 	
 	wait_to_cancel() (leapyear.analytics.classes.AsyncAnalysis method)

 	weekofyear() (in module leapyear.functions.time)

 	when() (in module leapyear.functions.non_aggregate)

 	where() (leapyear.dataset.DataSet method)

 	Window (class in leapyear.dataset)

 	
 	Winsorizer (class in leapyear.feature)

 	with_attribute() (leapyear.dataset.DataSet method)

 	with_attribute_renamed() (leapyear.dataset.DataSet method)

 	with_attributes() (leapyear.dataset.DataSet method)

 	with_attributes_renamed() (leapyear.dataset.DataSet method)

Y

 	
 	year() (in module leapyear.functions.time)

 	(leapyear.dataset.Attribute property)

 	
 	year_with_week() (in module leapyear.functions.time)

 	yearofweek() (in module leapyear.functions.time)

 _static/l2_coefs.png
weights

020

0.15

0.10

005

coefficients as a function of the regularization

000 e

-0.05

-0.10
102

10 10° 10°
alpha

107

_static/logistic_roc.png
True Positive Rate

10

08

06

04

02

00

Receiver operating characteristic example

. —— ROC curve (area = 0.82)

00 02 04 06 08 10
False Positive Rate

_static/file.png

_static/minus.png

_static/plus.png

_images/logistic_roc.png
True Positive Rate

10

08

06

04

02

00

Receiver operating characteristic example

. —— ROC curve (area = 0.82)

00 02 04 06 08 10
False Positive Rate

_images/decision_boundary.png
Decision Boundary

_images/l2_coefs.png
weights

020

0.15

0.10

005

coefficients as a function of the regularization

000 e

-0.05

-0.10
102

10 10° 10°
alpha

107

_static/decision_boundary.png
Decision Boundary

nav.xhtml

 Table of Contents

 		
 LeapYear Python Client

 		
 Getting Started

 		
 Connecting to LeapYear and Exploring

 		
 Databases, Tables and Columns

 		
 Column Types

 		
 The DataSet Class

 		
 Data Analysis

 		
 Statistics

 		
 Machine Learning

 		
 The Effect of L2 Regularization on Model Coefficients

 		
 Training a Simple Logistic Regression Model

 		
 Training a Random Forest

 		
 Management and Administration

 		
 Managing the LeapYear Server

 		
 User Management

 		
 Database Management

 		
 Table Management

 		
 API

 		
 Module leapyear

 		
 Connecting to the server

 		
 Create a User

 		
 Create a Database

 		
 Create a Table

 		
 The Client class

 		
 Module leapyear.admin

 		
 Database class

 		
 Table class

 		
 ColumnDefinition class

 		
 TableColumn class

 		
 View class

 		
 User class

 		
 Privacy Profile class

 		
 Permission objects

 		
 Module leapyear.admin.grants

 		
 Access Summaries

 		
 Functions

 		
 Module leapyear.jobs

 		
 Inspecting Job status

 		
 Module leapyear.dataset

 		
 DataSet class

 		
 Attribute class

 		
 Aliases

 		
 Grouping and Windowing classes

 		
 Module leapyear.functions

 		
 Datetime functions

 		
 Math functions

 		
 Non-aggregate functions

 		
 String functions

 		
 Windowing functions

 		
 Module leapyear.feature

 		
 OneHotEncoder class

 		
 BoundsScaler class

 		
 BoundsAbsScaler class

 		
 MinMaxScaler class

 		
 MaxAbsScaler class

 		
 StandardScaler class

 		
 ScaleTransformModel class

 		
 Normalizer class

 		
 Winsorizer class

 		
 Bucketizer class

 		
 Module leapyear.analytics

 		
 Data Analysis

 		
 Machine Learning

 		
 Context Managers

 		
 Save/Load Models

 		
 Module leapyear.analytics.classes

 		
 Analysis Classes

 		
 Rich Results

 		
 Aggregate Results

 		
 Module leapyear.model

 		
 Regression-Based Models

 		
 Tree-Based Models

 		
 Clustering Models

 		
 Model Evaluation Objects

 		
 Module leapyear.exceptions

 		
 Module leapyear.ext

 		
 Quick client

